MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicerOLD Structured version   Visualization version   GIF version

Theorem gicerOLD 17542
Description: Obsolete proof of gicer 17541 as of 1-May-2021. Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
gicerOLD 𝑔 Er Grp

Proof of Theorem gicerOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-gic 17525 . . . . . 6 𝑔 = ( GrpIso “ (V ∖ 1𝑜))
2 cnvimass 5404 . . . . . . 7 ( GrpIso “ (V ∖ 1𝑜)) ⊆ dom GrpIso
3 gimfn 17526 . . . . . . . 8 GrpIso Fn (Grp × Grp)
4 fndm 5904 . . . . . . . 8 ( GrpIso Fn (Grp × Grp) → dom GrpIso = (Grp × Grp))
53, 4ax-mp 5 . . . . . . 7 dom GrpIso = (Grp × Grp)
62, 5sseqtri 3600 . . . . . 6 ( GrpIso “ (V ∖ 1𝑜)) ⊆ (Grp × Grp)
71, 6eqsstri 3598 . . . . 5 𝑔 ⊆ (Grp × Grp)
8 relxp 5150 . . . . 5 Rel (Grp × Grp)
9 relss 5129 . . . . 5 ( ≃𝑔 ⊆ (Grp × Grp) → (Rel (Grp × Grp) → Rel ≃𝑔 ))
107, 8, 9mp2 9 . . . 4 Rel ≃𝑔
1110a1i 11 . . 3 (⊤ → Rel ≃𝑔 )
12 gicsym 17539 . . . 4 (𝑥𝑔 𝑦𝑦𝑔 𝑥)
1312adantl 481 . . 3 ((⊤ ∧ 𝑥𝑔 𝑦) → 𝑦𝑔 𝑥)
14 gictr 17540 . . . 4 ((𝑥𝑔 𝑦𝑦𝑔 𝑧) → 𝑥𝑔 𝑧)
1514adantl 481 . . 3 ((⊤ ∧ (𝑥𝑔 𝑦𝑦𝑔 𝑧)) → 𝑥𝑔 𝑧)
16 gicref 17536 . . . . 5 (𝑥 ∈ Grp → 𝑥𝑔 𝑥)
17 giclcl 17537 . . . . 5 (𝑥𝑔 𝑥𝑥 ∈ Grp)
1816, 17impbii 198 . . . 4 (𝑥 ∈ Grp ↔ 𝑥𝑔 𝑥)
1918a1i 11 . . 3 (⊤ → (𝑥 ∈ Grp ↔ 𝑥𝑔 𝑥))
2011, 13, 15, 19iserd 7655 . 2 (⊤ → ≃𝑔 Er Grp)
2120trud 1484 1 𝑔 Er Grp
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wtru 1476  wcel 1977  Vcvv 3173  cdif 3537  wss 3540   class class class wbr 4583   × cxp 5036  ccnv 5037  dom cdm 5038  cima 5041  Rel wrel 5043   Fn wfn 5799  1𝑜c1o 7440   Er wer 7626  Grpcgrp 17245   GrpIso cgim 17522  𝑔 cgic 17523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-1o 7447  df-er 7629  df-map 7746  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-ghm 17481  df-gim 17524  df-gic 17525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator