Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gicer | Structured version Visualization version GIF version |
Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.) |
Ref | Expression |
---|---|
gicer | ⊢ ≃𝑔 Er Grp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gic 17525 | . . . 4 ⊢ ≃𝑔 = (◡ GrpIso “ (V ∖ 1𝑜)) | |
2 | cnvimass 5404 | . . . . 5 ⊢ (◡ GrpIso “ (V ∖ 1𝑜)) ⊆ dom GrpIso | |
3 | gimfn 17526 | . . . . . 6 ⊢ GrpIso Fn (Grp × Grp) | |
4 | fndm 5904 | . . . . . 6 ⊢ ( GrpIso Fn (Grp × Grp) → dom GrpIso = (Grp × Grp)) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ dom GrpIso = (Grp × Grp) |
6 | 2, 5 | sseqtri 3600 | . . . 4 ⊢ (◡ GrpIso “ (V ∖ 1𝑜)) ⊆ (Grp × Grp) |
7 | 1, 6 | eqsstri 3598 | . . 3 ⊢ ≃𝑔 ⊆ (Grp × Grp) |
8 | relxp 5150 | . . 3 ⊢ Rel (Grp × Grp) | |
9 | relss 5129 | . . 3 ⊢ ( ≃𝑔 ⊆ (Grp × Grp) → (Rel (Grp × Grp) → Rel ≃𝑔 )) | |
10 | 7, 8, 9 | mp2 9 | . 2 ⊢ Rel ≃𝑔 |
11 | gicsym 17539 | . 2 ⊢ (𝑥 ≃𝑔 𝑦 → 𝑦 ≃𝑔 𝑥) | |
12 | gictr 17540 | . 2 ⊢ ((𝑥 ≃𝑔 𝑦 ∧ 𝑦 ≃𝑔 𝑧) → 𝑥 ≃𝑔 𝑧) | |
13 | gicref 17536 | . . 3 ⊢ (𝑥 ∈ Grp → 𝑥 ≃𝑔 𝑥) | |
14 | giclcl 17537 | . . 3 ⊢ (𝑥 ≃𝑔 𝑥 → 𝑥 ∈ Grp) | |
15 | 13, 14 | impbii 198 | . 2 ⊢ (𝑥 ∈ Grp ↔ 𝑥 ≃𝑔 𝑥) |
16 | 10, 11, 12, 15 | iseri 7656 | 1 ⊢ ≃𝑔 Er Grp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∖ cdif 3537 ⊆ wss 3540 class class class wbr 4583 × cxp 5036 ◡ccnv 5037 dom cdm 5038 “ cima 5041 Rel wrel 5043 Fn wfn 5799 1𝑜c1o 7440 Er wer 7626 Grpcgrp 17245 GrpIso cgim 17522 ≃𝑔 cgic 17523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-1o 7447 df-er 7629 df-map 7746 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mhm 17158 df-grp 17248 df-ghm 17481 df-gim 17524 df-gic 17525 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |