Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem11 Structured version   Visualization version   GIF version

Theorem fpwwe2lem11 9341
 Description: Lemma for fpwwe2 9344. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴 ∈ V)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2.4 𝑋 = dom 𝑊
Assertion
Ref Expression
fpwwe2lem11 (𝜑𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)

Proof of Theorem fpwwe2lem11
Dummy variables 𝑠 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwwe2.1 . . . . . 6 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
21relopabi 5167 . . . . 5 Rel 𝑊
32a1i 11 . . . 4 (𝜑 → Rel 𝑊)
4 simprr 792 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))
5 fpwwe2.2 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ V)
61, 5fpwwe2lem2 9333 . . . . . . . . . . . . . 14 (𝜑 → (𝑤𝑊𝑡 ↔ ((𝑤𝐴𝑡 ⊆ (𝑤 × 𝑤)) ∧ (𝑡 We 𝑤 ∧ ∀𝑦𝑤 [(𝑡 “ {𝑦}) / 𝑢](𝑢𝐹(𝑡 ∩ (𝑢 × 𝑢))) = 𝑦))))
76simprbda 651 . . . . . . . . . . . . 13 ((𝜑𝑤𝑊𝑡) → (𝑤𝐴𝑡 ⊆ (𝑤 × 𝑤)))
87simprd 478 . . . . . . . . . . . 12 ((𝜑𝑤𝑊𝑡) → 𝑡 ⊆ (𝑤 × 𝑤))
98adantrl 748 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑡 ⊆ (𝑤 × 𝑤))
109adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑡 ⊆ (𝑤 × 𝑤))
11 df-ss 3554 . . . . . . . . . 10 (𝑡 ⊆ (𝑤 × 𝑤) ↔ (𝑡 ∩ (𝑤 × 𝑤)) = 𝑡)
1210, 11sylib 207 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → (𝑡 ∩ (𝑤 × 𝑤)) = 𝑡)
134, 12eqtrd 2644 . . . . . . . 8 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑠 = 𝑡)
14 simprr 792 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))
151, 5fpwwe2lem2 9333 . . . . . . . . . . . . . 14 (𝜑 → (𝑤𝑊𝑠 ↔ ((𝑤𝐴𝑠 ⊆ (𝑤 × 𝑤)) ∧ (𝑠 We 𝑤 ∧ ∀𝑦𝑤 [(𝑠 “ {𝑦}) / 𝑢](𝑢𝐹(𝑠 ∩ (𝑢 × 𝑢))) = 𝑦))))
1615simprbda 651 . . . . . . . . . . . . 13 ((𝜑𝑤𝑊𝑠) → (𝑤𝐴𝑠 ⊆ (𝑤 × 𝑤)))
1716simprd 478 . . . . . . . . . . . 12 ((𝜑𝑤𝑊𝑠) → 𝑠 ⊆ (𝑤 × 𝑤))
1817adantrr 749 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑠 ⊆ (𝑤 × 𝑤))
1918adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑠 ⊆ (𝑤 × 𝑤))
20 df-ss 3554 . . . . . . . . . 10 (𝑠 ⊆ (𝑤 × 𝑤) ↔ (𝑠 ∩ (𝑤 × 𝑤)) = 𝑠)
2119, 20sylib 207 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → (𝑠 ∩ (𝑤 × 𝑤)) = 𝑠)
2214, 21eqtr2d 2645 . . . . . . . 8 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑠 = 𝑡)
235adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝐴 ∈ V)
24 fpwwe2.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
2524adantlr 747 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
26 simprl 790 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑤𝑊𝑠)
27 simprr 792 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑤𝑊𝑡)
281, 23, 25, 26, 27fpwwe2lem10 9340 . . . . . . . 8 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → ((𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤))) ∨ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))))
2913, 22, 28mpjaodan 823 . . . . . . 7 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑠 = 𝑡)
3029ex 449 . . . . . 6 (𝜑 → ((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡))
3130alrimiv 1842 . . . . 5 (𝜑 → ∀𝑡((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡))
3231alrimivv 1843 . . . 4 (𝜑 → ∀𝑤𝑠𝑡((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡))
33 dffun2 5814 . . . 4 (Fun 𝑊 ↔ (Rel 𝑊 ∧ ∀𝑤𝑠𝑡((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡)))
343, 32, 33sylanbrc 695 . . 3 (𝜑 → Fun 𝑊)
35 funfn 5833 . . 3 (Fun 𝑊𝑊 Fn dom 𝑊)
3634, 35sylib 207 . 2 (𝜑𝑊 Fn dom 𝑊)
37 vex 3176 . . . . 5 𝑠 ∈ V
3837elrn 5287 . . . 4 (𝑠 ∈ ran 𝑊 ↔ ∃𝑤 𝑤𝑊𝑠)
392releldmi 5283 . . . . . . . . . . . 12 (𝑤𝑊𝑠𝑤 ∈ dom 𝑊)
4039adantl 481 . . . . . . . . . . 11 ((𝜑𝑤𝑊𝑠) → 𝑤 ∈ dom 𝑊)
41 elssuni 4403 . . . . . . . . . . 11 (𝑤 ∈ dom 𝑊𝑤 dom 𝑊)
4240, 41syl 17 . . . . . . . . . 10 ((𝜑𝑤𝑊𝑠) → 𝑤 dom 𝑊)
43 fpwwe2.4 . . . . . . . . . 10 𝑋 = dom 𝑊
4442, 43syl6sseqr 3615 . . . . . . . . 9 ((𝜑𝑤𝑊𝑠) → 𝑤𝑋)
45 xpss12 5148 . . . . . . . . 9 ((𝑤𝑋𝑤𝑋) → (𝑤 × 𝑤) ⊆ (𝑋 × 𝑋))
4644, 44, 45syl2anc 691 . . . . . . . 8 ((𝜑𝑤𝑊𝑠) → (𝑤 × 𝑤) ⊆ (𝑋 × 𝑋))
4717, 46sstrd 3578 . . . . . . 7 ((𝜑𝑤𝑊𝑠) → 𝑠 ⊆ (𝑋 × 𝑋))
4847ex 449 . . . . . 6 (𝜑 → (𝑤𝑊𝑠𝑠 ⊆ (𝑋 × 𝑋)))
49 selpw 4115 . . . . . 6 (𝑠 ∈ 𝒫 (𝑋 × 𝑋) ↔ 𝑠 ⊆ (𝑋 × 𝑋))
5048, 49syl6ibr 241 . . . . 5 (𝜑 → (𝑤𝑊𝑠𝑠 ∈ 𝒫 (𝑋 × 𝑋)))
5150exlimdv 1848 . . . 4 (𝜑 → (∃𝑤 𝑤𝑊𝑠𝑠 ∈ 𝒫 (𝑋 × 𝑋)))
5238, 51syl5bi 231 . . 3 (𝜑 → (𝑠 ∈ ran 𝑊𝑠 ∈ 𝒫 (𝑋 × 𝑋)))
5352ssrdv 3574 . 2 (𝜑 → ran 𝑊 ⊆ 𝒫 (𝑋 × 𝑋))
54 df-f 5808 . 2 (𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋) ↔ (𝑊 Fn dom 𝑊 ∧ ran 𝑊 ⊆ 𝒫 (𝑋 × 𝑋)))
5536, 53, 54sylanbrc 695 1 (𝜑𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031  ∀wal 1473   = wceq 1475  ∃wex 1695   ∈ wcel 1977  ∀wral 2896  Vcvv 3173  [wsbc 3402   ∩ cin 3539   ⊆ wss 3540  𝒫 cpw 4108  {csn 4125  ∪ cuni 4372   class class class wbr 4583  {copab 4642   We wwe 4996   × cxp 5036  ◡ccnv 5037  dom cdm 5038  ran crn 5039   “ cima 5041  Rel wrel 5043  Fun wfun 5798   Fn wfn 5799  ⟶wf 5800  (class class class)co 6549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-wrecs 7294  df-recs 7355  df-oi 8298 This theorem is referenced by:  fpwwe2lem13  9343  fpwwe2  9344
 Copyright terms: Public domain W3C validator