MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem10 Structured version   Visualization version   GIF version

Theorem fpwwe2lem10 9340
Description: Lemma for fpwwe2 9344. Given two well-orders 𝑋, 𝑅 and 𝑌, 𝑆 of parts of 𝐴, one is an initial segment of the other. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴 ∈ V)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2lem10.4 (𝜑𝑋𝑊𝑅)
fpwwe2lem10.6 (𝜑𝑌𝑊𝑆)
Assertion
Ref Expression
fpwwe2lem10 (𝜑 → ((𝑋𝑌𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌𝑋𝑆 = (𝑅 ∩ (𝑋 × 𝑌)))))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑌,𝑟,𝑢,𝑥,𝑦   𝑆,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)

Proof of Theorem fpwwe2lem10
StepHypRef Expression
1 eqid 2610 . . . 4 OrdIso(𝑅, 𝑋) = OrdIso(𝑅, 𝑋)
21oicl 8317 . . 3 Ord dom OrdIso(𝑅, 𝑋)
3 eqid 2610 . . . 4 OrdIso(𝑆, 𝑌) = OrdIso(𝑆, 𝑌)
43oicl 8317 . . 3 Ord dom OrdIso(𝑆, 𝑌)
5 ordtri2or2 5740 . . 3 ((Ord dom OrdIso(𝑅, 𝑋) ∧ Ord dom OrdIso(𝑆, 𝑌)) → (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)))
62, 4, 5mp2an 704 . 2 (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋))
7 fpwwe2.1 . . . . 5 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
8 fpwwe2.2 . . . . . 6 (𝜑𝐴 ∈ V)
98adantr 480 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝐴 ∈ V)
10 fpwwe2.3 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
1110adantlr 747 . . . . 5 (((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
12 fpwwe2lem10.4 . . . . . 6 (𝜑𝑋𝑊𝑅)
1312adantr 480 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝑋𝑊𝑅)
14 fpwwe2lem10.6 . . . . . 6 (𝜑𝑌𝑊𝑆)
1514adantr 480 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝑌𝑊𝑆)
16 simpr 476 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌))
177, 9, 11, 13, 15, 1, 3, 16fpwwe2lem9 9339 . . . 4 ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → (𝑋𝑌𝑅 = (𝑆 ∩ (𝑌 × 𝑋))))
1817ex 449 . . 3 (𝜑 → (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) → (𝑋𝑌𝑅 = (𝑆 ∩ (𝑌 × 𝑋)))))
198adantr 480 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝐴 ∈ V)
2010adantlr 747 . . . . 5 (((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
2114adantr 480 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝑌𝑊𝑆)
2212adantr 480 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝑋𝑊𝑅)
23 simpr 476 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋))
247, 19, 20, 21, 22, 3, 1, 23fpwwe2lem9 9339 . . . 4 ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → (𝑌𝑋𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))
2524ex 449 . . 3 (𝜑 → (dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋) → (𝑌𝑋𝑆 = (𝑅 ∩ (𝑋 × 𝑌)))))
2618, 25orim12d 879 . 2 (𝜑 → ((dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → ((𝑋𝑌𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌𝑋𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))))
276, 26mpi 20 1 (𝜑 → ((𝑋𝑌𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌𝑋𝑆 = (𝑅 ∩ (𝑋 × 𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  [wsbc 3402  cin 3539  wss 3540  {csn 4125   class class class wbr 4583  {copab 4642   We wwe 4996   × cxp 5036  ccnv 5037  dom cdm 5038  cima 5041  Ord word 5639  (class class class)co 6549  OrdIsocoi 8297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-wrecs 7294  df-recs 7355  df-oi 8298
This theorem is referenced by:  fpwwe2lem11  9341  fpwwe2lem12  9342  fpwwe2  9344
  Copyright terms: Public domain W3C validator