MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem11 Unicode version

Theorem fpwwe2lem11 8471
Description: Lemma for fpwwe2 8474. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
fpwwe2.2  |-  ( ph  ->  A  e.  _V )
fpwwe2.3  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x F r )  e.  A )
fpwwe2.4  |-  X  = 
U. dom  W
Assertion
Ref Expression
fpwwe2lem11  |-  ( ph  ->  W : dom  W --> ~P ( X  X.  X
) )
Distinct variable groups:    y, u, r, x, F    X, r, u, x, y    ph, r, u, x, y    A, r, x    W, r, u, x, y
Allowed substitution hints:    A( y, u)

Proof of Theorem fpwwe2lem11
Dummy variables  s 
t  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwwe2.1 . . . . . 6  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
21relopabi 4959 . . . . 5  |-  Rel  W
32a1i 11 . . . 4  |-  ( ph  ->  Rel  W )
4 simprr 734 . . . . . . . . 9  |-  ( ( ( ph  /\  (
w W s  /\  w W t ) )  /\  ( w  C_  w  /\  s  =  ( t  i^i  ( w  X.  w ) ) ) )  ->  s  =  ( t  i^i  ( w  X.  w
) ) )
5 fpwwe2.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  _V )
61, 5fpwwe2lem2 8463 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( w W t  <-> 
( ( w  C_  A  /\  t  C_  (
w  X.  w ) )  /\  ( t  We  w  /\  A. y  e.  w  [. ( `' t " {
y } )  /  u ]. ( u F ( t  i^i  (
u  X.  u ) ) )  =  y ) ) ) )
76simprbda 607 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w W
t )  ->  (
w  C_  A  /\  t  C_  ( w  X.  w ) ) )
87simprd 450 . . . . . . . . . . . 12  |-  ( (
ph  /\  w W
t )  ->  t  C_  ( w  X.  w
) )
98adantrl 697 . . . . . . . . . . 11  |-  ( (
ph  /\  ( w W s  /\  w W t ) )  ->  t  C_  (
w  X.  w ) )
109adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
w W s  /\  w W t ) )  /\  ( w  C_  w  /\  s  =  ( t  i^i  ( w  X.  w ) ) ) )  ->  t  C_  ( w  X.  w
) )
11 df-ss 3294 . . . . . . . . . 10  |-  ( t 
C_  ( w  X.  w )  <->  ( t  i^i  ( w  X.  w
) )  =  t )
1210, 11sylib 189 . . . . . . . . 9  |-  ( ( ( ph  /\  (
w W s  /\  w W t ) )  /\  ( w  C_  w  /\  s  =  ( t  i^i  ( w  X.  w ) ) ) )  ->  (
t  i^i  ( w  X.  w ) )  =  t )
134, 12eqtrd 2436 . . . . . . . 8  |-  ( ( ( ph  /\  (
w W s  /\  w W t ) )  /\  ( w  C_  w  /\  s  =  ( t  i^i  ( w  X.  w ) ) ) )  ->  s  =  t )
14 simprr 734 . . . . . . . . 9  |-  ( ( ( ph  /\  (
w W s  /\  w W t ) )  /\  ( w  C_  w  /\  t  =  ( s  i^i  ( w  X.  w ) ) ) )  ->  t  =  ( s  i^i  ( w  X.  w
) ) )
151, 5fpwwe2lem2 8463 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( w W s  <-> 
( ( w  C_  A  /\  s  C_  (
w  X.  w ) )  /\  ( s  We  w  /\  A. y  e.  w  [. ( `' s " {
y } )  /  u ]. ( u F ( s  i^i  (
u  X.  u ) ) )  =  y ) ) ) )
1615simprbda 607 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w W
s )  ->  (
w  C_  A  /\  s  C_  ( w  X.  w ) ) )
1716simprd 450 . . . . . . . . . . . 12  |-  ( (
ph  /\  w W
s )  ->  s  C_  ( w  X.  w
) )
1817adantrr 698 . . . . . . . . . . 11  |-  ( (
ph  /\  ( w W s  /\  w W t ) )  ->  s  C_  (
w  X.  w ) )
1918adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
w W s  /\  w W t ) )  /\  ( w  C_  w  /\  t  =  ( s  i^i  ( w  X.  w ) ) ) )  ->  s  C_  ( w  X.  w
) )
20 df-ss 3294 . . . . . . . . . 10  |-  ( s 
C_  ( w  X.  w )  <->  ( s  i^i  ( w  X.  w
) )  =  s )
2119, 20sylib 189 . . . . . . . . 9  |-  ( ( ( ph  /\  (
w W s  /\  w W t ) )  /\  ( w  C_  w  /\  t  =  ( s  i^i  ( w  X.  w ) ) ) )  ->  (
s  i^i  ( w  X.  w ) )  =  s )
2214, 21eqtr2d 2437 . . . . . . . 8  |-  ( ( ( ph  /\  (
w W s  /\  w W t ) )  /\  ( w  C_  w  /\  t  =  ( s  i^i  ( w  X.  w ) ) ) )  ->  s  =  t )
235adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( w W s  /\  w W t ) )  ->  A  e.  _V )
24 fpwwe2.3 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x F r )  e.  A )
2524adantlr 696 . . . . . . . . 9  |-  ( ( ( ph  /\  (
w W s  /\  w W t ) )  /\  ( x  C_  A  /\  r  C_  (
x  X.  x )  /\  r  We  x
) )  ->  (
x F r )  e.  A )
26 simprl 733 . . . . . . . . 9  |-  ( (
ph  /\  ( w W s  /\  w W t ) )  ->  w W s )
27 simprr 734 . . . . . . . . 9  |-  ( (
ph  /\  ( w W s  /\  w W t ) )  ->  w W t )
281, 23, 25, 26, 27fpwwe2lem10 8470 . . . . . . . 8  |-  ( (
ph  /\  ( w W s  /\  w W t ) )  ->  ( ( w 
C_  w  /\  s  =  ( t  i^i  ( w  X.  w
) ) )  \/  ( w  C_  w  /\  t  =  (
s  i^i  ( w  X.  w ) ) ) ) )
2913, 22, 28mpjaodan 762 . . . . . . 7  |-  ( (
ph  /\  ( w W s  /\  w W t ) )  ->  s  =  t )
3029ex 424 . . . . . 6  |-  ( ph  ->  ( ( w W s  /\  w W t )  ->  s  =  t ) )
3130alrimiv 1638 . . . . 5  |-  ( ph  ->  A. t ( ( w W s  /\  w W t )  -> 
s  =  t ) )
3231alrimivv 1639 . . . 4  |-  ( ph  ->  A. w A. s A. t ( ( w W s  /\  w W t )  -> 
s  =  t ) )
33 dffun2 5423 . . . 4  |-  ( Fun 
W  <->  ( Rel  W  /\  A. w A. s A. t ( ( w W s  /\  w W t )  -> 
s  =  t ) ) )
343, 32, 33sylanbrc 646 . . 3  |-  ( ph  ->  Fun  W )
35 funfn 5441 . . 3  |-  ( Fun 
W  <->  W  Fn  dom  W )
3634, 35sylib 189 . 2  |-  ( ph  ->  W  Fn  dom  W
)
37 vex 2919 . . . . 5  |-  s  e. 
_V
3837elrn 5069 . . . 4  |-  ( s  e.  ran  W  <->  E. w  w W s )
392releldmi 5065 . . . . . . . . . . . 12  |-  ( w W s  ->  w  e.  dom  W )
4039adantl 453 . . . . . . . . . . 11  |-  ( (
ph  /\  w W
s )  ->  w  e.  dom  W )
41 elssuni 4003 . . . . . . . . . . 11  |-  ( w  e.  dom  W  ->  w  C_  U. dom  W
)
4240, 41syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  w W
s )  ->  w  C_ 
U. dom  W )
43 fpwwe2.4 . . . . . . . . . 10  |-  X  = 
U. dom  W
4442, 43syl6sseqr 3355 . . . . . . . . 9  |-  ( (
ph  /\  w W
s )  ->  w  C_  X )
45 xpss12 4940 . . . . . . . . 9  |-  ( ( w  C_  X  /\  w  C_  X )  -> 
( w  X.  w
)  C_  ( X  X.  X ) )
4644, 44, 45syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  w W
s )  ->  (
w  X.  w ) 
C_  ( X  X.  X ) )
4717, 46sstrd 3318 . . . . . . 7  |-  ( (
ph  /\  w W
s )  ->  s  C_  ( X  X.  X
) )
4847ex 424 . . . . . 6  |-  ( ph  ->  ( w W s  ->  s  C_  ( X  X.  X ) ) )
4937elpw 3765 . . . . . 6  |-  ( s  e.  ~P ( X  X.  X )  <->  s  C_  ( X  X.  X
) )
5048, 49syl6ibr 219 . . . . 5  |-  ( ph  ->  ( w W s  ->  s  e.  ~P ( X  X.  X
) ) )
5150exlimdv 1643 . . . 4  |-  ( ph  ->  ( E. w  w W s  ->  s  e.  ~P ( X  X.  X ) ) )
5238, 51syl5bi 209 . . 3  |-  ( ph  ->  ( s  e.  ran  W  ->  s  e.  ~P ( X  X.  X
) ) )
5352ssrdv 3314 . 2  |-  ( ph  ->  ran  W  C_  ~P ( X  X.  X
) )
54 df-f 5417 . 2  |-  ( W : dom  W --> ~P ( X  X.  X )  <->  ( W  Fn  dom  W  /\  ran  W 
C_  ~P ( X  X.  X ) ) )
5536, 53, 54sylanbrc 646 1  |-  ( ph  ->  W : dom  W --> ~P ( X  X.  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916   [.wsbc 3121    i^i cin 3279    C_ wss 3280   ~Pcpw 3759   {csn 3774   U.cuni 3975   class class class wbr 4172   {copab 4225    We wwe 4500    X. cxp 4835   `'ccnv 4836   dom cdm 4837   ran crn 4838   "cima 4840   Rel wrel 4842   Fun wfun 5407    Fn wfn 5408   -->wf 5409  (class class class)co 6040
This theorem is referenced by:  fpwwe2lem13  8473  fpwwe2  8474
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-riota 6508  df-recs 6592  df-oi 7435
  Copyright terms: Public domain W3C validator