Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrn Structured version   Visualization version   GIF version

Theorem elrn 5287
 Description: Membership in a range. (Contributed by NM, 2-Apr-2004.)
Hypothesis
Ref Expression
elrn.1 𝐴 ∈ V
Assertion
Ref Expression
elrn (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elrn
StepHypRef Expression
1 elrn.1 . . 3 𝐴 ∈ V
21elrn2 5286 . 2 (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
3 df-br 4584 . . 3 (𝑥𝐵𝐴 ↔ ⟨𝑥, 𝐴⟩ ∈ 𝐵)
43exbii 1764 . 2 (∃𝑥 𝑥𝐵𝐴 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
52, 4bitr4i 266 1 (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195  ∃wex 1695   ∈ wcel 1977  Vcvv 3173  ⟨cop 4131   class class class wbr 4583  ran crn 5039 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-cnv 5046  df-dm 5048  df-rn 5049 This theorem is referenced by:  dmcosseq  5308  inisegn0  5416  rnco  5558  dffo4  6283  fvclss  6404  rntpos  7252  fpwwe2lem11  9341  fpwwe2lem12  9342  fclim  14132  perfdvf  23473  dftr6  30893  dffr5  30896  brsset  31166  dfon3  31169  brtxpsd  31171  dffix2  31182  elsingles  31195  dfrdg4  31228  undmrnresiss  36929
 Copyright terms: Public domain W3C validator