Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fphpd Structured version   Visualization version   GIF version

Theorem fphpd 36398
 Description: Pigeonhole principle expressed with implicit substitution. If the range is smaller than the domain, two inputs must be mapped to the same output. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
fphpd.a (𝜑𝐵𝐴)
fphpd.b ((𝜑𝑥𝐴) → 𝐶𝐵)
fphpd.c (𝑥 = 𝑦𝐶 = 𝐷)
Assertion
Ref Expression
fphpd (𝜑 → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝐶 = 𝐷))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem fphpd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnsym 7971 . . . 4 (𝐴𝐵 → ¬ 𝐵𝐴)
2 fphpd.a . . . 4 (𝜑𝐵𝐴)
31, 2nsyl3 132 . . 3 (𝜑 → ¬ 𝐴𝐵)
4 relsdom 7848 . . . . . . 7 Rel ≺
54brrelexi 5082 . . . . . 6 (𝐵𝐴𝐵 ∈ V)
62, 5syl 17 . . . . 5 (𝜑𝐵 ∈ V)
76adantr 480 . . . 4 ((𝜑 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → 𝐵 ∈ V)
8 nfv 1830 . . . . . . . . 9 𝑥(𝜑𝑎𝐴)
9 nfcsb1v 3515 . . . . . . . . . 10 𝑥𝑎 / 𝑥𝐶
109nfel1 2765 . . . . . . . . 9 𝑥𝑎 / 𝑥𝐶𝐵
118, 10nfim 1813 . . . . . . . 8 𝑥((𝜑𝑎𝐴) → 𝑎 / 𝑥𝐶𝐵)
12 eleq1 2676 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
1312anbi2d 736 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝜑𝑥𝐴) ↔ (𝜑𝑎𝐴)))
14 csbeq1a 3508 . . . . . . . . . 10 (𝑥 = 𝑎𝐶 = 𝑎 / 𝑥𝐶)
1514eleq1d 2672 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐶𝐵𝑎 / 𝑥𝐶𝐵))
1613, 15imbi12d 333 . . . . . . . 8 (𝑥 = 𝑎 → (((𝜑𝑥𝐴) → 𝐶𝐵) ↔ ((𝜑𝑎𝐴) → 𝑎 / 𝑥𝐶𝐵)))
17 fphpd.b . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶𝐵)
1811, 16, 17chvar 2250 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑎 / 𝑥𝐶𝐵)
1918ex 449 . . . . . 6 (𝜑 → (𝑎𝐴𝑎 / 𝑥𝐶𝐵))
2019adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → (𝑎𝐴𝑎 / 𝑥𝐶𝐵))
21 csbid 3507 . . . . . . . . . . 11 𝑥 / 𝑥𝐶 = 𝐶
22 vex 3176 . . . . . . . . . . . 12 𝑦 ∈ V
23 fphpd.c . . . . . . . . . . . 12 (𝑥 = 𝑦𝐶 = 𝐷)
2422, 23csbie 3525 . . . . . . . . . . 11 𝑦 / 𝑥𝐶 = 𝐷
2521, 24eqeq12i 2624 . . . . . . . . . 10 (𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝐶 = 𝐷)
2625imbi1i 338 . . . . . . . . 9 ((𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑥 = 𝑦) ↔ (𝐶 = 𝐷𝑥 = 𝑦))
27262ralbii 2964 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴 (𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
28 nfcsb1v 3515 . . . . . . . . . . . 12 𝑥𝑦 / 𝑥𝐶
299, 28nfeq 2762 . . . . . . . . . . 11 𝑥𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶
30 nfv 1830 . . . . . . . . . . 11 𝑥 𝑎 = 𝑦
3129, 30nfim 1813 . . . . . . . . . 10 𝑥(𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑎 = 𝑦)
32 nfv 1830 . . . . . . . . . 10 𝑦(𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)
33 csbeq1 3502 . . . . . . . . . . . 12 (𝑥 = 𝑎𝑥 / 𝑥𝐶 = 𝑎 / 𝑥𝐶)
3433eqeq1d 2612 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶))
35 equequ1 1939 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 = 𝑦𝑎 = 𝑦))
3634, 35imbi12d 333 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑥 = 𝑦) ↔ (𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑎 = 𝑦)))
37 csbeq1 3502 . . . . . . . . . . . 12 (𝑦 = 𝑏𝑦 / 𝑥𝐶 = 𝑏 / 𝑥𝐶)
3837eqeq2d 2620 . . . . . . . . . . 11 (𝑦 = 𝑏 → (𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶))
39 equequ2 1940 . . . . . . . . . . 11 (𝑦 = 𝑏 → (𝑎 = 𝑦𝑎 = 𝑏))
4038, 39imbi12d 333 . . . . . . . . . 10 (𝑦 = 𝑏 → ((𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑎 = 𝑦) ↔ (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
4131, 32, 36, 40rspc2 3292 . . . . . . . . 9 ((𝑎𝐴𝑏𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑥 = 𝑦) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
4241com12 32 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴 (𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑥 = 𝑦) → ((𝑎𝐴𝑏𝐴) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
4327, 42sylbir 224 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦) → ((𝑎𝐴𝑏𝐴) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
44 id 22 . . . . . . . 8 ((𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏))
45 csbeq1 3502 . . . . . . . 8 (𝑎 = 𝑏𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶)
4644, 45impbid1 214 . . . . . . 7 ((𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏))
4743, 46syl6 34 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦) → ((𝑎𝐴𝑏𝐴) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
4847adantl 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → ((𝑎𝐴𝑏𝐴) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
4920, 48dom2d 7882 . . . 4 ((𝜑 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → (𝐵 ∈ V → 𝐴𝐵))
507, 49mpd 15 . . 3 ((𝜑 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → 𝐴𝐵)
513, 50mtand 689 . 2 (𝜑 → ¬ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
52 ancom 465 . . . . . . 7 ((¬ 𝑥 = 𝑦𝐶 = 𝐷) ↔ (𝐶 = 𝐷 ∧ ¬ 𝑥 = 𝑦))
53 df-ne 2782 . . . . . . . 8 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
5453anbi1i 727 . . . . . . 7 ((𝑥𝑦𝐶 = 𝐷) ↔ (¬ 𝑥 = 𝑦𝐶 = 𝐷))
55 pm4.61 441 . . . . . . 7 (¬ (𝐶 = 𝐷𝑥 = 𝑦) ↔ (𝐶 = 𝐷 ∧ ¬ 𝑥 = 𝑦))
5652, 54, 553bitr4i 291 . . . . . 6 ((𝑥𝑦𝐶 = 𝐷) ↔ ¬ (𝐶 = 𝐷𝑥 = 𝑦))
5756rexbii 3023 . . . . 5 (∃𝑦𝐴 (𝑥𝑦𝐶 = 𝐷) ↔ ∃𝑦𝐴 ¬ (𝐶 = 𝐷𝑥 = 𝑦))
58 rexnal 2978 . . . . 5 (∃𝑦𝐴 ¬ (𝐶 = 𝐷𝑥 = 𝑦) ↔ ¬ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
5957, 58bitri 263 . . . 4 (∃𝑦𝐴 (𝑥𝑦𝐶 = 𝐷) ↔ ¬ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
6059rexbii 3023 . . 3 (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝐶 = 𝐷) ↔ ∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
61 rexnal 2978 . . 3 (∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
6260, 61bitri 263 . 2 (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝐶 = 𝐷) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
6351, 62sylibr 223 1 (𝜑 → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝐶 = 𝐷))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  Vcvv 3173  ⦋csb 3499   class class class wbr 4583   ≼ cdom 7839   ≺ csdm 7840 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844 This theorem is referenced by:  fphpdo  36399  pellex  36417
 Copyright terms: Public domain W3C validator