Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fphpd Structured version   Unicode version

Theorem fphpd 29108
Description: Pigeonhole principle expressed with implicit substitution. If the range is smaller than the domain, two inputs must be mapped to the same output. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
fphpd.a  |-  ( ph  ->  B  ~<  A )
fphpd.b  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
fphpd.c  |-  ( x  =  y  ->  C  =  D )
Assertion
Ref Expression
fphpd  |-  ( ph  ->  E. x  e.  A  E. y  e.  A  ( x  =/=  y  /\  C  =  D
) )
Distinct variable groups:    x, A, y    x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem fphpd
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnsym 7429 . . . 4  |-  ( A  ~<_  B  ->  -.  B  ~<  A )
2 fphpd.a . . . 4  |-  ( ph  ->  B  ~<  A )
31, 2nsyl3 119 . . 3  |-  ( ph  ->  -.  A  ~<_  B )
4 relsdom 7309 . . . . . . 7  |-  Rel  ~<
54brrelexi 4874 . . . . . 6  |-  ( B 
~<  A  ->  B  e. 
_V )
62, 5syl 16 . . . . 5  |-  ( ph  ->  B  e.  _V )
76adantr 465 . . . 4  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  ->  B  e.  _V )
8 nfv 1673 . . . . . . . . 9  |-  F/ x
( ph  /\  a  e.  A )
9 nfcsb1v 3299 . . . . . . . . . 10  |-  F/_ x [_ a  /  x ]_ C
109nfel1 2584 . . . . . . . . 9  |-  F/ x [_ a  /  x ]_ C  e.  B
118, 10nfim 1852 . . . . . . . 8  |-  F/ x
( ( ph  /\  a  e.  A )  ->  [_ a  /  x ]_ C  e.  B
)
12 eleq1 2498 . . . . . . . . . 10  |-  ( x  =  a  ->  (
x  e.  A  <->  a  e.  A ) )
1312anbi2d 703 . . . . . . . . 9  |-  ( x  =  a  ->  (
( ph  /\  x  e.  A )  <->  ( ph  /\  a  e.  A ) ) )
14 csbeq1a 3292 . . . . . . . . . 10  |-  ( x  =  a  ->  C  =  [_ a  /  x ]_ C )
1514eleq1d 2504 . . . . . . . . 9  |-  ( x  =  a  ->  ( C  e.  B  <->  [_ a  /  x ]_ C  e.  B
) )
1613, 15imbi12d 320 . . . . . . . 8  |-  ( x  =  a  ->  (
( ( ph  /\  x  e.  A )  ->  C  e.  B )  <-> 
( ( ph  /\  a  e.  A )  ->  [_ a  /  x ]_ C  e.  B
) ) )
17 fphpd.b . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
1811, 16, 17chvar 1957 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  [_ a  /  x ]_ C  e.  B )
1918ex 434 . . . . . 6  |-  ( ph  ->  ( a  e.  A  ->  [_ a  /  x ]_ C  e.  B
) )
2019adantr 465 . . . . 5  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  -> 
( a  e.  A  ->  [_ a  /  x ]_ C  e.  B
) )
21 csbid 3291 . . . . . . . . . . 11  |-  [_ x  /  x ]_ C  =  C
22 vex 2970 . . . . . . . . . . . 12  |-  y  e. 
_V
23 nfcv 2574 . . . . . . . . . . . 12  |-  F/_ x D
24 fphpd.c . . . . . . . . . . . 12  |-  ( x  =  y  ->  C  =  D )
2522, 23, 24csbief 3308 . . . . . . . . . . 11  |-  [_ y  /  x ]_ C  =  D
2621, 25eqeq12i 2451 . . . . . . . . . 10  |-  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  <->  C  =  D
)
2726imbi1i 325 . . . . . . . . 9  |-  ( (
[_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y )
)
28272ralbii 2736 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
29 nfcsb1v 3299 . . . . . . . . . . . 12  |-  F/_ x [_ y  /  x ]_ C
309, 29nfeq 2581 . . . . . . . . . . 11  |-  F/ x [_ a  /  x ]_ C  =  [_ y  /  x ]_ C
31 nfv 1673 . . . . . . . . . . 11  |-  F/ x  a  =  y
3230, 31nfim 1852 . . . . . . . . . 10  |-  F/ x
( [_ a  /  x ]_ C  =  [_ y  /  x ]_ C  -> 
a  =  y )
33 nfv 1673 . . . . . . . . . 10  |-  F/ y ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  ->  a  =  b )
34 csbeq1 3286 . . . . . . . . . . . 12  |-  ( x  =  a  ->  [_ x  /  x ]_ C  = 
[_ a  /  x ]_ C )
3534eqeq1d 2446 . . . . . . . . . . 11  |-  ( x  =  a  ->  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  <->  [_ a  /  x ]_ C  =  [_ y  /  x ]_ C
) )
36 equequ1 1736 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
x  =  y  <->  a  =  y ) )
3735, 36imbi12d 320 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  <->  (
[_ a  /  x ]_ C  =  [_ y  /  x ]_ C  -> 
a  =  y ) ) )
38 csbeq1 3286 . . . . . . . . . . . 12  |-  ( y  =  b  ->  [_ y  /  x ]_ C  = 
[_ b  /  x ]_ C )
3938eqeq2d 2449 . . . . . . . . . . 11  |-  ( y  =  b  ->  ( [_ a  /  x ]_ C  =  [_ y  /  x ]_ C  <->  [_ a  /  x ]_ C  =  [_ b  /  x ]_ C
) )
40 equequ2 1737 . . . . . . . . . . 11  |-  ( y  =  b  ->  (
a  =  y  <->  a  =  b ) )
4139, 40imbi12d 320 . . . . . . . . . 10  |-  ( y  =  b  ->  (
( [_ a  /  x ]_ C  =  [_ y  /  x ]_ C  -> 
a  =  y )  <-> 
( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
4232, 33, 37, 41rspc2 3073 . . . . . . . . 9  |-  ( ( a  e.  A  /\  b  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  ( [_ x  /  x ]_ C  = 
[_ y  /  x ]_ C  ->  x  =  y )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
4342com12 31 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  ->  ( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
4428, 43sylbir 213 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
45 id 22 . . . . . . . 8  |-  ( (
[_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b )  ->  ( [_ a  /  x ]_ C  = 
[_ b  /  x ]_ C  ->  a  =  b ) )
46 csbeq1 3286 . . . . . . . 8  |-  ( a  =  b  ->  [_ a  /  x ]_ C  = 
[_ b  /  x ]_ C )
4745, 46impbid1 203 . . . . . . 7  |-  ( (
[_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b )  ->  ( [_ a  /  x ]_ C  = 
[_ b  /  x ]_ C  <->  a  =  b ) )
4844, 47syl6 33 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  <->  a  =  b ) ) )
4948adantl 466 . . . . 5  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  <->  a  =  b ) ) )
5020, 49dom2d 7342 . . . 4  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  -> 
( B  e.  _V  ->  A  ~<_  B ) )
517, 50mpd 15 . . 3  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  ->  A  ~<_  B )
523, 51mtand 659 . 2  |-  ( ph  ->  -.  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
53 ancom 450 . . . . . . 7  |-  ( ( -.  x  =  y  /\  C  =  D )  <->  ( C  =  D  /\  -.  x  =  y ) )
54 df-ne 2603 . . . . . . . 8  |-  ( x  =/=  y  <->  -.  x  =  y )
5554anbi1i 695 . . . . . . 7  |-  ( ( x  =/=  y  /\  C  =  D )  <->  ( -.  x  =  y  /\  C  =  D ) )
56 pm4.61 426 . . . . . . 7  |-  ( -.  ( C  =  D  ->  x  =  y )  <->  ( C  =  D  /\  -.  x  =  y ) )
5753, 55, 563bitr4i 277 . . . . . 6  |-  ( ( x  =/=  y  /\  C  =  D )  <->  -.  ( C  =  D  ->  x  =  y ) )
5857rexbii 2735 . . . . 5  |-  ( E. y  e.  A  ( x  =/=  y  /\  C  =  D )  <->  E. y  e.  A  -.  ( C  =  D  ->  x  =  y ) )
59 rexnal 2721 . . . . 5  |-  ( E. y  e.  A  -.  ( C  =  D  ->  x  =  y )  <->  -.  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
6058, 59bitri 249 . . . 4  |-  ( E. y  e.  A  ( x  =/=  y  /\  C  =  D )  <->  -. 
A. y  e.  A  ( C  =  D  ->  x  =  y ) )
6160rexbii 2735 . . 3  |-  ( E. x  e.  A  E. y  e.  A  (
x  =/=  y  /\  C  =  D )  <->  E. x  e.  A  -.  A. y  e.  A  ( C  =  D  ->  x  =  y )
)
62 rexnal 2721 . . 3  |-  ( E. x  e.  A  -.  A. y  e.  A  ( C  =  D  ->  x  =  y )  <->  -. 
A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
6361, 62bitri 249 . 2  |-  ( E. x  e.  A  E. y  e.  A  (
x  =/=  y  /\  C  =  D )  <->  -. 
A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
6452, 63sylibr 212 1  |-  ( ph  ->  E. x  e.  A  E. y  e.  A  ( x  =/=  y  /\  C  =  D
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711   _Vcvv 2967   [_csb 3283   class class class wbr 4287    ~<_ cdom 7300    ~< csdm 7301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305
This theorem is referenced by:  fphpdo  29109  pellex  29129
  Copyright terms: Public domain W3C validator