Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fphpd Unicode version

Theorem fphpd 26767
Description: Pigeonhole principle expressed with implicit substitution. If the range is smaller than the domain, two inputs must be mapped to the same output. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
fphpd.a  |-  ( ph  ->  B  ~<  A )
fphpd.b  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
fphpd.c  |-  ( x  =  y  ->  C  =  D )
Assertion
Ref Expression
fphpd  |-  ( ph  ->  E. x  e.  A  E. y  e.  A  ( x  =/=  y  /\  C  =  D
) )
Distinct variable groups:    x, A, y    x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem fphpd
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnsym 7192 . . . 4  |-  ( A  ~<_  B  ->  -.  B  ~<  A )
2 fphpd.a . . . 4  |-  ( ph  ->  B  ~<  A )
31, 2nsyl3 113 . . 3  |-  ( ph  ->  -.  A  ~<_  B )
4 relsdom 7075 . . . . . . 7  |-  Rel  ~<
54brrelexi 4877 . . . . . 6  |-  ( B 
~<  A  ->  B  e. 
_V )
62, 5syl 16 . . . . 5  |-  ( ph  ->  B  e.  _V )
76adantr 452 . . . 4  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  ->  B  e.  _V )
8 nfv 1626 . . . . . . . . 9  |-  F/ x
( ph  /\  a  e.  A )
9 nfcsb1v 3243 . . . . . . . . . 10  |-  F/_ x [_ a  /  x ]_ C
109nfel1 2550 . . . . . . . . 9  |-  F/ x [_ a  /  x ]_ C  e.  B
118, 10nfim 1828 . . . . . . . 8  |-  F/ x
( ( ph  /\  a  e.  A )  ->  [_ a  /  x ]_ C  e.  B
)
12 eleq1 2464 . . . . . . . . . 10  |-  ( x  =  a  ->  (
x  e.  A  <->  a  e.  A ) )
1312anbi2d 685 . . . . . . . . 9  |-  ( x  =  a  ->  (
( ph  /\  x  e.  A )  <->  ( ph  /\  a  e.  A ) ) )
14 csbeq1a 3219 . . . . . . . . . 10  |-  ( x  =  a  ->  C  =  [_ a  /  x ]_ C )
1514eleq1d 2470 . . . . . . . . 9  |-  ( x  =  a  ->  ( C  e.  B  <->  [_ a  /  x ]_ C  e.  B
) )
1613, 15imbi12d 312 . . . . . . . 8  |-  ( x  =  a  ->  (
( ( ph  /\  x  e.  A )  ->  C  e.  B )  <-> 
( ( ph  /\  a  e.  A )  ->  [_ a  /  x ]_ C  e.  B
) ) )
17 fphpd.b . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
1811, 16, 17chvar 2039 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  [_ a  /  x ]_ C  e.  B )
1918ex 424 . . . . . 6  |-  ( ph  ->  ( a  e.  A  ->  [_ a  /  x ]_ C  e.  B
) )
2019adantr 452 . . . . 5  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  -> 
( a  e.  A  ->  [_ a  /  x ]_ C  e.  B
) )
21 csbid 3218 . . . . . . . . . . 11  |-  [_ x  /  x ]_ C  =  C
22 vex 2919 . . . . . . . . . . . 12  |-  y  e. 
_V
23 nfcv 2540 . . . . . . . . . . . 12  |-  F/_ x D
24 fphpd.c . . . . . . . . . . . 12  |-  ( x  =  y  ->  C  =  D )
2522, 23, 24csbief 3252 . . . . . . . . . . 11  |-  [_ y  /  x ]_ C  =  D
2621, 25eqeq12i 2417 . . . . . . . . . 10  |-  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  <->  C  =  D
)
2726imbi1i 316 . . . . . . . . 9  |-  ( (
[_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y )
)
28272ralbii 2692 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
29 nfcsb1v 3243 . . . . . . . . . . . 12  |-  F/_ x [_ y  /  x ]_ C
309, 29nfeq 2547 . . . . . . . . . . 11  |-  F/ x [_ a  /  x ]_ C  =  [_ y  /  x ]_ C
31 nfv 1626 . . . . . . . . . . 11  |-  F/ x  a  =  y
3230, 31nfim 1828 . . . . . . . . . 10  |-  F/ x
( [_ a  /  x ]_ C  =  [_ y  /  x ]_ C  -> 
a  =  y )
33 nfv 1626 . . . . . . . . . 10  |-  F/ y ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  ->  a  =  b )
34 csbeq1 3214 . . . . . . . . . . . 12  |-  ( x  =  a  ->  [_ x  /  x ]_ C  = 
[_ a  /  x ]_ C )
3534eqeq1d 2412 . . . . . . . . . . 11  |-  ( x  =  a  ->  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  <->  [_ a  /  x ]_ C  =  [_ y  /  x ]_ C
) )
36 equequ1 1692 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
x  =  y  <->  a  =  y ) )
3735, 36imbi12d 312 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  <->  (
[_ a  /  x ]_ C  =  [_ y  /  x ]_ C  -> 
a  =  y ) ) )
38 csbeq1 3214 . . . . . . . . . . . 12  |-  ( y  =  b  ->  [_ y  /  x ]_ C  = 
[_ b  /  x ]_ C )
3938eqeq2d 2415 . . . . . . . . . . 11  |-  ( y  =  b  ->  ( [_ a  /  x ]_ C  =  [_ y  /  x ]_ C  <->  [_ a  /  x ]_ C  =  [_ b  /  x ]_ C
) )
40 equequ2 1694 . . . . . . . . . . 11  |-  ( y  =  b  ->  (
a  =  y  <->  a  =  b ) )
4139, 40imbi12d 312 . . . . . . . . . 10  |-  ( y  =  b  ->  (
( [_ a  /  x ]_ C  =  [_ y  /  x ]_ C  -> 
a  =  y )  <-> 
( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
4232, 33, 37, 41rspc2 3017 . . . . . . . . 9  |-  ( ( a  e.  A  /\  b  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  ( [_ x  /  x ]_ C  = 
[_ y  /  x ]_ C  ->  x  =  y )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
4342com12 29 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  ->  ( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
4428, 43sylbir 205 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
45 id 20 . . . . . . . 8  |-  ( (
[_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b )  ->  ( [_ a  /  x ]_ C  = 
[_ b  /  x ]_ C  ->  a  =  b ) )
46 csbeq1 3214 . . . . . . . 8  |-  ( a  =  b  ->  [_ a  /  x ]_ C  = 
[_ b  /  x ]_ C )
4745, 46impbid1 195 . . . . . . 7  |-  ( (
[_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b )  ->  ( [_ a  /  x ]_ C  = 
[_ b  /  x ]_ C  <->  a  =  b ) )
4844, 47syl6 31 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  <->  a  =  b ) ) )
4948adantl 453 . . . . 5  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  <->  a  =  b ) ) )
5020, 49dom2d 7107 . . . 4  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  -> 
( B  e.  _V  ->  A  ~<_  B ) )
517, 50mpd 15 . . 3  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  ->  A  ~<_  B )
523, 51mtand 641 . 2  |-  ( ph  ->  -.  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
53 ancom 438 . . . . . . 7  |-  ( ( -.  x  =  y  /\  C  =  D )  <->  ( C  =  D  /\  -.  x  =  y ) )
54 df-ne 2569 . . . . . . . 8  |-  ( x  =/=  y  <->  -.  x  =  y )
5554anbi1i 677 . . . . . . 7  |-  ( ( x  =/=  y  /\  C  =  D )  <->  ( -.  x  =  y  /\  C  =  D ) )
56 pm4.61 416 . . . . . . 7  |-  ( -.  ( C  =  D  ->  x  =  y )  <->  ( C  =  D  /\  -.  x  =  y ) )
5753, 55, 563bitr4i 269 . . . . . 6  |-  ( ( x  =/=  y  /\  C  =  D )  <->  -.  ( C  =  D  ->  x  =  y ) )
5857rexbii 2691 . . . . 5  |-  ( E. y  e.  A  ( x  =/=  y  /\  C  =  D )  <->  E. y  e.  A  -.  ( C  =  D  ->  x  =  y ) )
59 rexnal 2677 . . . . 5  |-  ( E. y  e.  A  -.  ( C  =  D  ->  x  =  y )  <->  -.  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
6058, 59bitri 241 . . . 4  |-  ( E. y  e.  A  ( x  =/=  y  /\  C  =  D )  <->  -. 
A. y  e.  A  ( C  =  D  ->  x  =  y ) )
6160rexbii 2691 . . 3  |-  ( E. x  e.  A  E. y  e.  A  (
x  =/=  y  /\  C  =  D )  <->  E. x  e.  A  -.  A. y  e.  A  ( C  =  D  ->  x  =  y )
)
62 rexnal 2677 . . 3  |-  ( E. x  e.  A  -.  A. y  e.  A  ( C  =  D  ->  x  =  y )  <->  -. 
A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
6361, 62bitri 241 . 2  |-  ( E. x  e.  A  E. y  e.  A  (
x  =/=  y  /\  C  =  D )  <->  -. 
A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
6452, 63sylibr 204 1  |-  ( ph  ->  E. x  e.  A  E. y  e.  A  ( x  =/=  y  /\  C  =  D
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   _Vcvv 2916   [_csb 3211   class class class wbr 4172    ~<_ cdom 7066    ~< csdm 7067
This theorem is referenced by:  fphpdo  26768  pellex  26788
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071
  Copyright terms: Public domain W3C validator