MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmpt2ovd Structured version   Visualization version   GIF version

Theorem fnmpt2ovd 7139
Description: A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.)
Hypotheses
Ref Expression
fnmpt2ovd.m (𝜑𝑀 Fn (𝐴 × 𝐵))
fnmpt2ovd.s ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐷 = 𝐶)
fnmpt2ovd.d ((𝜑𝑖𝐴𝑗𝐵) → 𝐷𝑈)
fnmpt2ovd.c ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)
fnmpt2ovd.v (𝜑 → (𝐴𝑋𝐵𝑌))
Assertion
Ref Expression
fnmpt2ovd (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑖,𝑗   𝐵,𝑎,𝑏,𝑖,𝑗   𝐶,𝑖,𝑗   𝐷,𝑎,𝑏   𝑀,𝑎,𝑏,𝑖,𝑗   𝑈,𝑎,𝑏,𝑖,𝑗   𝑉,𝑎,𝑏,𝑖,𝑗   𝑋,𝑎,𝑏,𝑖,𝑗   𝑌,𝑎,𝑏,𝑖,𝑗   𝜑,𝑎,𝑏,𝑖,𝑗
Allowed substitution hints:   𝐶(𝑎,𝑏)   𝐷(𝑖,𝑗)

Proof of Theorem fnmpt2ovd
StepHypRef Expression
1 fnmpt2ovd.m . . 3 (𝜑𝑀 Fn (𝐴 × 𝐵))
2 fnmpt2ovd.c . . . . . 6 ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)
323expb 1258 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝐶𝑉)
43ralrimivva 2954 . . . 4 (𝜑 → ∀𝑎𝐴𝑏𝐵 𝐶𝑉)
5 eqid 2610 . . . . 5 (𝑎𝐴, 𝑏𝐵𝐶) = (𝑎𝐴, 𝑏𝐵𝐶)
65fnmpt2 7127 . . . 4 (∀𝑎𝐴𝑏𝐵 𝐶𝑉 → (𝑎𝐴, 𝑏𝐵𝐶) Fn (𝐴 × 𝐵))
74, 6syl 17 . . 3 (𝜑 → (𝑎𝐴, 𝑏𝐵𝐶) Fn (𝐴 × 𝐵))
8 eqfnov2 6665 . . 3 ((𝑀 Fn (𝐴 × 𝐵) ∧ (𝑎𝐴, 𝑏𝐵𝐶) Fn (𝐴 × 𝐵)) → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗)))
91, 7, 8syl2anc 691 . 2 (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗)))
10 nfcv 2751 . . . . . . . 8 𝑎𝐷
11 nfcv 2751 . . . . . . . 8 𝑏𝐷
12 nfcv 2751 . . . . . . . 8 𝑖𝐶
13 nfcv 2751 . . . . . . . 8 𝑗𝐶
14 fnmpt2ovd.s . . . . . . . 8 ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐷 = 𝐶)
1510, 11, 12, 13, 14cbvmpt2 6632 . . . . . . 7 (𝑖𝐴, 𝑗𝐵𝐷) = (𝑎𝐴, 𝑏𝐵𝐶)
1615eqcomi 2619 . . . . . 6 (𝑎𝐴, 𝑏𝐵𝐶) = (𝑖𝐴, 𝑗𝐵𝐷)
1716a1i 11 . . . . 5 (𝜑 → (𝑎𝐴, 𝑏𝐵𝐶) = (𝑖𝐴, 𝑗𝐵𝐷))
1817oveqd 6566 . . . 4 (𝜑 → (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗))
1918eqeq2d 2620 . . 3 (𝜑 → ((𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗) ↔ (𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗)))
20192ralbidv 2972 . 2 (𝜑 → (∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗)))
21 simprl 790 . . . . 5 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → 𝑖𝐴)
22 simprr 792 . . . . 5 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → 𝑗𝐵)
23 fnmpt2ovd.d . . . . . 6 ((𝜑𝑖𝐴𝑗𝐵) → 𝐷𝑈)
24233expb 1258 . . . . 5 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → 𝐷𝑈)
25 eqid 2610 . . . . . 6 (𝑖𝐴, 𝑗𝐵𝐷) = (𝑖𝐴, 𝑗𝐵𝐷)
2625ovmpt4g 6681 . . . . 5 ((𝑖𝐴𝑗𝐵𝐷𝑈) → (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) = 𝐷)
2721, 22, 24, 26syl3anc 1318 . . . 4 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) = 𝐷)
2827eqeq2d 2620 . . 3 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → ((𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) ↔ (𝑖𝑀𝑗) = 𝐷))
29282ralbidva 2971 . 2 (𝜑 → (∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))
309, 20, 293bitrd 293 1 (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896   × cxp 5036   Fn wfn 5799  (class class class)co 6549  cmpt2 6551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060
This theorem is referenced by:  mpt2frlmd  19935
  Copyright terms: Public domain W3C validator