MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2mpt2cl Structured version   Visualization version   GIF version

Theorem el2mpt2cl 7138
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. Using implicit substitution. (Contributed by AV, 21-May-2021.)
Hypotheses
Ref Expression
el2mpt2cl.o 𝑂 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑠𝐶, 𝑡𝐷𝐸))
el2mpt2cl.e ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐶 = 𝐹𝐷 = 𝐺))
Assertion
Ref Expression
el2mpt2cl (∀𝑥𝐴𝑦𝐵 (𝐶𝑈𝐷𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐹𝑇𝐺))))
Distinct variable groups:   𝐴,𝑠,𝑡,𝑥,𝑦   𝐵,𝑠,𝑡,𝑥,𝑦   𝐶,𝑠,𝑡   𝐷,𝑠,𝑡   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦   𝑋,𝑠,𝑡,𝑥,𝑦   𝑌,𝑠,𝑡,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑡,𝑠)   𝑇(𝑥,𝑦,𝑡,𝑠)   𝑈(𝑡,𝑠)   𝐸(𝑥,𝑦,𝑡,𝑠)   𝐹(𝑡,𝑠)   𝐺(𝑡,𝑠)   𝑂(𝑥,𝑦,𝑡,𝑠)   𝑉(𝑡,𝑠)   𝑊(𝑥,𝑦,𝑡,𝑠)

Proof of Theorem el2mpt2cl
StepHypRef Expression
1 el2mpt2cl.o . . 3 𝑂 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑠𝐶, 𝑡𝐷𝐸))
21el2mpt2csbcl 7137 . 2 (∀𝑥𝐴𝑦𝐵 (𝐶𝑈𝐷𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷))))
3 simpl 472 . . . . . . 7 ((𝑋𝐴𝑌𝐵) → 𝑋𝐴)
4 simplr 788 . . . . . . . 8 (((𝑋𝐴𝑌𝐵) ∧ 𝑥 = 𝑋) → 𝑌𝐵)
5 el2mpt2cl.e . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐶 = 𝐹𝐷 = 𝐺))
65simpld 474 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝐶 = 𝐹)
76adantll 746 . . . . . . . 8 ((((𝑋𝐴𝑌𝐵) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝐶 = 𝐹)
84, 7csbied 3526 . . . . . . 7 (((𝑋𝐴𝑌𝐵) ∧ 𝑥 = 𝑋) → 𝑌 / 𝑦𝐶 = 𝐹)
93, 8csbied 3526 . . . . . 6 ((𝑋𝐴𝑌𝐵) → 𝑋 / 𝑥𝑌 / 𝑦𝐶 = 𝐹)
109eleq2d 2673 . . . . 5 ((𝑋𝐴𝑌𝐵) → (𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑆𝐹))
115simprd 478 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝐷 = 𝐺)
1211adantll 746 . . . . . . . 8 ((((𝑋𝐴𝑌𝐵) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺)
134, 12csbied 3526 . . . . . . 7 (((𝑋𝐴𝑌𝐵) ∧ 𝑥 = 𝑋) → 𝑌 / 𝑦𝐷 = 𝐺)
143, 13csbied 3526 . . . . . 6 ((𝑋𝐴𝑌𝐵) → 𝑋 / 𝑥𝑌 / 𝑦𝐷 = 𝐺)
1514eleq2d 2673 . . . . 5 ((𝑋𝐴𝑌𝐵) → (𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷𝑇𝐺))
1610, 15anbi12d 743 . . . 4 ((𝑋𝐴𝑌𝐵) → ((𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷) ↔ (𝑆𝐹𝑇𝐺)))
1716biimpd 218 . . 3 ((𝑋𝐴𝑌𝐵) → ((𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷) → (𝑆𝐹𝑇𝐺)))
1817imdistani 722 . 2 (((𝑋𝐴𝑌𝐵) ∧ (𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷)) → ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐹𝑇𝐺)))
192, 18syl6 34 1 (∀𝑥𝐴𝑦𝐵 (𝐶𝑈𝐷𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐹𝑇𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  csb 3499  (class class class)co 6549  cmpt2 6551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060
This theorem is referenced by:  wspthnonp  41055
  Copyright terms: Public domain W3C validator