Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnmpt2 | Structured version Visualization version GIF version |
Description: Functionality and domain of a class given by the "maps to" notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
fnmpt2 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → 𝐹 Fn (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3185 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
2 | 1 | ralimi 2936 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ∀𝑦 ∈ 𝐵 𝐶 ∈ V) |
3 | 2 | ralimi 2936 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V) |
4 | fmpt2.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
5 | 4 | fmpt2 7126 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V ↔ 𝐹:(𝐴 × 𝐵)⟶V) |
6 | dffn2 5960 | . . 3 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V) | |
7 | 5, 6 | bitr4i 266 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V ↔ 𝐹 Fn (𝐴 × 𝐵)) |
8 | 3, 7 | sylib 207 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → 𝐹 Fn (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ∀wral 2896 Vcvv 3173 × cxp 5036 Fn wfn 5799 ⟶wf 5800 ↦ cmpt2 6551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 |
This theorem is referenced by: fnmpt2i 7128 dmmpt2ga 7131 fnmpt2ovd 7139 genpdm 9703 isofn 16258 brric 18567 mpt2cti 28881 f1od2 28887 cnre2csqima 29285 elrnmpt2id 38422 smflimlem3 39659 smflimlem6 39662 |
Copyright terms: Public domain | W3C validator |