Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbfinnfr Structured version   Visualization version   GIF version

Theorem fbfinnfr 21455
 Description: No filter base containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbfinnfr ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹𝑆 ∈ Fin) → 𝐹 ≠ ∅)

Proof of Theorem fbfinnfr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2676 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐹𝑦𝐹))
21anbi2d 736 . . . . 5 (𝑥 = 𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹)))
32imbi1d 330 . . . 4 (𝑥 = 𝑦 → (((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝐹 ≠ ∅)))
4 eleq1 2676 . . . . . 6 (𝑥 = 𝑆 → (𝑥𝐹𝑆𝐹))
54anbi2d 736 . . . . 5 (𝑥 = 𝑆 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹)))
65imbi1d 330 . . . 4 (𝑥 = 𝑆 → (((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹) → 𝐹 ≠ ∅)))
7 ibar 524 . . . . . . . . . . . 12 (𝐹 ∈ (fBas‘𝐵) → (𝑥𝐹 ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹)))
87adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑥𝐹 ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹)))
98imbi1d 330 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → ((𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅)) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → (𝑥𝑦 𝐹 ≠ ∅))))
10 bi2.04 375 . . . . . . . . . 10 ((𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → (𝑥𝑦 𝐹 ≠ ∅)))
119, 10syl6rbbr 278 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → ((𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ (𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅))))
1211albidv 1836 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ ∀𝑥(𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅))))
13 df-ral 2901 . . . . . . . 8 (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) ↔ ∀𝑥(𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅)))
1412, 13syl6bbr 277 . . . . . . 7 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ ∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅)))
15 0nelfb 21445 . . . . . . . . . . . . 13 (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹)
16 eleq1 2676 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (𝑦𝐹 ↔ ∅ ∈ 𝐹))
1716notbid 307 . . . . . . . . . . . . 13 (𝑦 = ∅ → (¬ 𝑦𝐹 ↔ ¬ ∅ ∈ 𝐹))
1815, 17syl5ibrcom 236 . . . . . . . . . . . 12 (𝐹 ∈ (fBas‘𝐵) → (𝑦 = ∅ → ¬ 𝑦𝐹))
1918necon2ad 2797 . . . . . . . . . . 11 (𝐹 ∈ (fBas‘𝐵) → (𝑦𝐹𝑦 ≠ ∅))
2019imp 444 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝑦 ≠ ∅)
21 ssn0 3928 . . . . . . . . . . 11 ((𝑦 𝐹𝑦 ≠ ∅) → 𝐹 ≠ ∅)
2221ex 449 . . . . . . . . . 10 (𝑦 𝐹 → (𝑦 ≠ ∅ → 𝐹 ≠ ∅))
2320, 22syl5com 31 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑦 𝐹 𝐹 ≠ ∅))
2423a1dd 48 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑦 𝐹 → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅)))
25 ssint 4428 . . . . . . . . . . . 12 (𝑦 𝐹 ↔ ∀𝑧𝐹 𝑦𝑧)
2625notbii 309 . . . . . . . . . . 11 𝑦 𝐹 ↔ ¬ ∀𝑧𝐹 𝑦𝑧)
27 rexnal 2978 . . . . . . . . . . 11 (∃𝑧𝐹 ¬ 𝑦𝑧 ↔ ¬ ∀𝑧𝐹 𝑦𝑧)
2826, 27bitr4i 266 . . . . . . . . . 10 𝑦 𝐹 ↔ ∃𝑧𝐹 ¬ 𝑦𝑧)
29 fbasssin 21450 . . . . . . . . . . . . 13 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹𝑧𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
30 nssinpss 3818 . . . . . . . . . . . . . . . 16 𝑦𝑧 ↔ (𝑦𝑧) ⊊ 𝑦)
31 sspsstr 3674 . . . . . . . . . . . . . . . 16 ((𝑥 ⊆ (𝑦𝑧) ∧ (𝑦𝑧) ⊊ 𝑦) → 𝑥𝑦)
3230, 31sylan2b 491 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ (𝑦𝑧) ∧ ¬ 𝑦𝑧) → 𝑥𝑦)
3332expcom 450 . . . . . . . . . . . . . 14 𝑦𝑧 → (𝑥 ⊆ (𝑦𝑧) → 𝑥𝑦))
3433reximdv 2999 . . . . . . . . . . . . 13 𝑦𝑧 → (∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧) → ∃𝑥𝐹 𝑥𝑦))
3529, 34syl5com 31 . . . . . . . . . . . 12 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹𝑧𝐹) → (¬ 𝑦𝑧 → ∃𝑥𝐹 𝑥𝑦))
36353expia 1259 . . . . . . . . . . 11 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑧𝐹 → (¬ 𝑦𝑧 → ∃𝑥𝐹 𝑥𝑦)))
3736rexlimdv 3012 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∃𝑧𝐹 ¬ 𝑦𝑧 → ∃𝑥𝐹 𝑥𝑦))
3828, 37syl5bi 231 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (¬ 𝑦 𝐹 → ∃𝑥𝐹 𝑥𝑦))
39 r19.29 3054 . . . . . . . . . . 11 ((∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) ∧ ∃𝑥𝐹 𝑥𝑦) → ∃𝑥𝐹 ((𝑥𝑦 𝐹 ≠ ∅) ∧ 𝑥𝑦))
40 id 22 . . . . . . . . . . . . 13 ((𝑥𝑦 𝐹 ≠ ∅) → (𝑥𝑦 𝐹 ≠ ∅))
4140imp 444 . . . . . . . . . . . 12 (((𝑥𝑦 𝐹 ≠ ∅) ∧ 𝑥𝑦) → 𝐹 ≠ ∅)
4241rexlimivw 3011 . . . . . . . . . . 11 (∃𝑥𝐹 ((𝑥𝑦 𝐹 ≠ ∅) ∧ 𝑥𝑦) → 𝐹 ≠ ∅)
4339, 42syl 17 . . . . . . . . . 10 ((∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) ∧ ∃𝑥𝐹 𝑥𝑦) → 𝐹 ≠ ∅)
4443expcom 450 . . . . . . . . 9 (∃𝑥𝐹 𝑥𝑦 → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅))
4538, 44syl6 34 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (¬ 𝑦 𝐹 → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅)))
4624, 45pm2.61d 169 . . . . . . 7 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅))
4714, 46sylbid 229 . . . . . 6 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) → 𝐹 ≠ ∅))
4847com12 32 . . . . 5 (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝐹 ≠ ∅))
4948a1i 11 . . . 4 (𝑦 ∈ Fin → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝐹 ≠ ∅)))
503, 6, 49findcard3 8088 . . 3 (𝑆 ∈ Fin → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹) → 𝐹 ≠ ∅))
5150com12 32 . 2 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹) → (𝑆 ∈ Fin → 𝐹 ≠ ∅))
52513impia 1253 1 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹𝑆 ∈ Fin) → 𝐹 ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031  ∀wal 1473   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ∩ cin 3539   ⊆ wss 3540   ⊊ wpss 3541  ∅c0 3874  ∩ cint 4410  ‘cfv 5804  Fincfn 7841  fBascfbas 19555 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fbas 19564 This theorem is referenced by:  filfinnfr  21491
 Copyright terms: Public domain W3C validator