MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbfinnfr Structured version   Unicode version

Theorem fbfinnfr 20105
Description: No filter base containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbfinnfr  |-  ( ( F  e.  ( fBas `  B )  /\  S  e.  F  /\  S  e. 
Fin )  ->  |^| F  =/=  (/) )

Proof of Theorem fbfinnfr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2539 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  F  <->  y  e.  F ) )
21anbi2d 703 . . . . 5  |-  ( x  =  y  ->  (
( F  e.  (
fBas `  B )  /\  x  e.  F
)  <->  ( F  e.  ( fBas `  B
)  /\  y  e.  F ) ) )
32imbi1d 317 . . . 4  |-  ( x  =  y  ->  (
( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) )  <->  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  |^| F  =/=  (/) ) ) )
4 eleq1 2539 . . . . . 6  |-  ( x  =  S  ->  (
x  e.  F  <->  S  e.  F ) )
54anbi2d 703 . . . . 5  |-  ( x  =  S  ->  (
( F  e.  (
fBas `  B )  /\  x  e.  F
)  <->  ( F  e.  ( fBas `  B
)  /\  S  e.  F ) ) )
65imbi1d 317 . . . 4  |-  ( x  =  S  ->  (
( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) )  <->  ( ( F  e.  ( fBas `  B )  /\  S  e.  F )  ->  |^| F  =/=  (/) ) ) )
7 ibar 504 . . . . . . . . . . . 12  |-  ( F  e.  ( fBas `  B
)  ->  ( x  e.  F  <->  ( F  e.  ( fBas `  B
)  /\  x  e.  F ) ) )
87adantr 465 . . . . . . . . . . 11  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
x  e.  F  <->  ( F  e.  ( fBas `  B
)  /\  x  e.  F ) ) )
98imbi1d 317 . . . . . . . . . 10  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
( x  e.  F  ->  ( x  C.  y  ->  |^| F  =/=  (/) ) )  <-> 
( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  (
x  C.  y  ->  |^| F  =/=  (/) ) ) ) )
10 bi2.04 361 . . . . . . . . . 10  |-  ( ( x  C.  y  ->  ( ( F  e.  (
fBas `  B )  /\  x  e.  F
)  ->  |^| F  =/=  (/) ) )  <->  ( ( F  e.  ( fBas `  B )  /\  x  e.  F )  ->  (
x  C.  y  ->  |^| F  =/=  (/) ) ) )
119, 10syl6rbbr 264 . . . . . . . . 9  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  <->  ( x  e.  F  ->  ( x 
C.  y  ->  |^| F  =/=  (/) ) ) ) )
1211albidv 1689 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( A. x ( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  <->  A. x
( x  e.  F  ->  ( x  C.  y  ->  |^| F  =/=  (/) ) ) ) )
13 df-ral 2819 . . . . . . . 8  |-  ( A. x  e.  F  (
x  C.  y  ->  |^| F  =/=  (/) )  <->  A. x
( x  e.  F  ->  ( x  C.  y  ->  |^| F  =/=  (/) ) ) )
1412, 13syl6bbr 263 . . . . . . 7  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( A. x ( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  <->  A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) ) ) )
15 0nelfb 20095 . . . . . . . . . . . . 13  |-  ( F  e.  ( fBas `  B
)  ->  -.  (/)  e.  F
)
16 eleq1 2539 . . . . . . . . . . . . . 14  |-  ( y  =  (/)  ->  ( y  e.  F  <->  (/)  e.  F
) )
1716notbid 294 . . . . . . . . . . . . 13  |-  ( y  =  (/)  ->  ( -.  y  e.  F  <->  -.  (/)  e.  F
) )
1815, 17syl5ibrcom 222 . . . . . . . . . . . 12  |-  ( F  e.  ( fBas `  B
)  ->  ( y  =  (/)  ->  -.  y  e.  F ) )
1918necon2ad 2680 . . . . . . . . . . 11  |-  ( F  e.  ( fBas `  B
)  ->  ( y  e.  F  ->  y  =/=  (/) ) )
2019imp 429 . . . . . . . . . 10  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  y  =/=  (/) )
21 ssn0 3818 . . . . . . . . . . 11  |-  ( ( y  C_  |^| F  /\  y  =/=  (/) )  ->  |^| F  =/=  (/) )
2221ex 434 . . . . . . . . . 10  |-  ( y 
C_  |^| F  ->  (
y  =/=  (/)  ->  |^| F  =/=  (/) ) )
2320, 22syl5com 30 . . . . . . . . 9  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
y  C_  |^| F  ->  |^| F  =/=  (/) ) )
2423a1dd 46 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
y  C_  |^| F  -> 
( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  ->  |^| F  =/=  (/) ) ) )
25 ssint 4298 . . . . . . . . . . . 12  |-  ( y 
C_  |^| F  <->  A. z  e.  F  y  C_  z )
2625notbii 296 . . . . . . . . . . 11  |-  ( -.  y  C_  |^| F  <->  -.  A. z  e.  F  y  C_  z )
27 rexnal 2912 . . . . . . . . . . 11  |-  ( E. z  e.  F  -.  y  C_  z  <->  -.  A. z  e.  F  y  C_  z )
2826, 27bitr4i 252 . . . . . . . . . 10  |-  ( -.  y  C_  |^| F  <->  E. z  e.  F  -.  y  C_  z )
29 fbasssin 20100 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F  /\  z  e.  F )  ->  E. x  e.  F  x  C_  (
y  i^i  z )
)
30 nssinpss 3730 . . . . . . . . . . . . . . . 16  |-  ( -.  y  C_  z  <->  ( y  i^i  z )  C.  y
)
31 sspsstr 3609 . . . . . . . . . . . . . . . 16  |-  ( ( x  C_  ( y  i^i  z )  /\  (
y  i^i  z )  C.  y )  ->  x  C.  y )
3230, 31sylan2b 475 . . . . . . . . . . . . . . 15  |-  ( ( x  C_  ( y  i^i  z )  /\  -.  y  C_  z )  ->  x  C.  y )
3332expcom 435 . . . . . . . . . . . . . 14  |-  ( -.  y  C_  z  ->  ( x  C_  ( y  i^i  z )  ->  x  C.  y ) )
3433reximdv 2937 . . . . . . . . . . . . 13  |-  ( -.  y  C_  z  ->  ( E. x  e.  F  x  C_  ( y  i^i  z )  ->  E. x  e.  F  x  C.  y
) )
3529, 34syl5com 30 . . . . . . . . . . . 12  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F  /\  z  e.  F )  ->  ( -.  y  C_  z  ->  E. x  e.  F  x  C.  y ) )
36353expia 1198 . . . . . . . . . . 11  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  (
z  e.  F  -> 
( -.  y  C_  z  ->  E. x  e.  F  x  C.  y ) ) )
3736rexlimdv 2953 . . . . . . . . . 10  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( E. z  e.  F  -.  y  C_  z  ->  E. x  e.  F  x  C.  y ) )
3828, 37syl5bi 217 . . . . . . . . 9  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( -.  y  C_  |^| F  ->  E. x  e.  F  x  C.  y ) )
39 r19.29 2997 . . . . . . . . . . 11  |-  ( ( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  /\  E. x  e.  F  x 
C.  y )  ->  E. x  e.  F  ( ( x  C.  y  ->  |^| F  =/=  (/) )  /\  x  C.  y ) )
40 id 22 . . . . . . . . . . . . 13  |-  ( ( x  C.  y  ->  |^| F  =/=  (/) )  -> 
( x  C.  y  ->  |^| F  =/=  (/) ) )
4140imp 429 . . . . . . . . . . . 12  |-  ( ( ( x  C.  y  ->  |^| F  =/=  (/) )  /\  x  C.  y )  ->  |^| F  =/=  (/) )
4241rexlimivw 2952 . . . . . . . . . . 11  |-  ( E. x  e.  F  ( ( x  C.  y  ->  |^| F  =/=  (/) )  /\  x  C.  y )  ->  |^| F  =/=  (/) )
4339, 42syl 16 . . . . . . . . . 10  |-  ( ( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  /\  E. x  e.  F  x 
C.  y )  ->  |^| F  =/=  (/) )
4443expcom 435 . . . . . . . . 9  |-  ( E. x  e.  F  x 
C.  y  ->  ( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  ->  |^| F  =/=  (/) ) )
4538, 44syl6 33 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( -.  y  C_  |^| F  ->  ( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  ->  |^| F  =/=  (/) ) ) )
4624, 45pm2.61d 158 . . . . . . 7  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( A. x  e.  F  ( x  C.  y  ->  |^| F  =/=  (/) )  ->  |^| F  =/=  (/) ) )
4714, 46sylbid 215 . . . . . 6  |-  ( ( F  e.  ( fBas `  B )  /\  y  e.  F )  ->  ( A. x ( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  ->  |^| F  =/=  (/) ) )
4847com12 31 . . . . 5  |-  ( A. x ( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  -> 
( ( F  e.  ( fBas `  B
)  /\  y  e.  F )  ->  |^| F  =/=  (/) ) )
4948a1i 11 . . . 4  |-  ( y  e.  Fin  ->  ( A. x ( x  C.  y  ->  ( ( F  e.  ( fBas `  B
)  /\  x  e.  F )  ->  |^| F  =/=  (/) ) )  -> 
( ( F  e.  ( fBas `  B
)  /\  y  e.  F )  ->  |^| F  =/=  (/) ) ) )
503, 6, 49findcard3 7763 . . 3  |-  ( S  e.  Fin  ->  (
( F  e.  (
fBas `  B )  /\  S  e.  F
)  ->  |^| F  =/=  (/) ) )
5150com12 31 . 2  |-  ( ( F  e.  ( fBas `  B )  /\  S  e.  F )  ->  ( S  e.  Fin  ->  |^| F  =/=  (/) ) )
52513impia 1193 1  |-  ( ( F  e.  ( fBas `  B )  /\  S  e.  F  /\  S  e. 
Fin )  ->  |^| F  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    i^i cin 3475    C_ wss 3476    C. wpss 3477   (/)c0 3785   |^|cint 4282   ` cfv 5588   Fincfn 7516   fBascfbas 18205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-om 6685  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fbas 18215
This theorem is referenced by:  filfinnfr  20141
  Copyright terms: Public domain W3C validator