Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1rhm0to0 Structured version   Visualization version   GIF version

Theorem f1rhm0to0 18563
 Description: If a ring homomorphism 𝐹 is injective, it maps the zero of one ring (and only the zero) to the zero of the other ring. (Contributed by AV, 24-Oct-2019.)
Hypotheses
Ref Expression
f1rhm0to0.a 𝐴 = (Base‘𝑅)
f1rhm0to0.b 𝐵 = (Base‘𝑆)
f1rhm0to0.n 𝑁 = (0g𝑆)
f1rhm0to0.0 0 = (0g𝑅)
Assertion
Ref Expression
f1rhm0to0 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))

Proof of Theorem f1rhm0to0
StepHypRef Expression
1 rhmghm 18548 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
2 f1rhm0to0.0 . . . . . . 7 0 = (0g𝑅)
3 f1rhm0to0.n . . . . . . 7 𝑁 = (0g𝑆)
42, 3ghmid 17489 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹0 ) = 𝑁)
51, 4syl 17 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹0 ) = 𝑁)
653ad2ant1 1075 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → (𝐹0 ) = 𝑁)
76eqeq2d 2620 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = (𝐹0 ) ↔ (𝐹𝑋) = 𝑁))
8 simp2 1055 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → 𝐹:𝐴1-1𝐵)
9 simp3 1056 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → 𝑋𝐴)
10 rhmrcl1 18542 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
11 f1rhm0to0.a . . . . . . 7 𝐴 = (Base‘𝑅)
1211, 2ring0cl 18392 . . . . . 6 (𝑅 ∈ Ring → 0𝐴)
1310, 12syl 17 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 0𝐴)
14133ad2ant1 1075 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → 0𝐴)
15 f1veqaeq 6418 . . . 4 ((𝐹:𝐴1-1𝐵 ∧ (𝑋𝐴0𝐴)) → ((𝐹𝑋) = (𝐹0 ) → 𝑋 = 0 ))
168, 9, 14, 15syl12anc 1316 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = (𝐹0 ) → 𝑋 = 0 ))
177, 16sylbird 249 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))
18 fveq2 6103 . . . 4 (𝑋 = 0 → (𝐹𝑋) = (𝐹0 ))
1918, 6sylan9eqr 2666 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) ∧ 𝑋 = 0 ) → (𝐹𝑋) = 𝑁)
2019ex 449 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → (𝑋 = 0 → (𝐹𝑋) = 𝑁))
2117, 20impbid 201 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  –1-1→wf1 5801  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  0gc0g 15923   GrpHom cghm 17480  Ringcrg 18370   RingHom crh 18535 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-ghm 17481  df-mgp 18313  df-ur 18325  df-ring 18372  df-rnghom 18538 This theorem is referenced by:  rim0to0  18565  kerf1hrm  18566
 Copyright terms: Public domain W3C validator