Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpg | Structured version Visualization version GIF version |
Description: Membership in the class of partizan games. In ONAG this is stated as "If 𝐿 and 𝑅 are any two sets of games, then there is a game {𝐿 ∣ 𝑅}. All games are constructed in this way." The first sentence corresponds to the backward direction of our theorem, and the second to the forward direction. (Contributed by Emmett Weisz, 27-Aug-2021.) |
Ref | Expression |
---|---|
elpg | ⊢ (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpglem1 42253 | . . . 4 ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)) → ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) | |
2 | elpglem2 42254 | . . . 4 ⊢ (((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg) → ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥))) | |
3 | 1, 2 | impbii 198 | . . 3 ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)) ↔ ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
4 | 3 | anbi2i 726 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥))) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg))) |
5 | df-pg 42252 | . . . 4 ⊢ Pg = setrecs((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))) | |
6 | 5 | elsetrecs 42244 | . . 3 ⊢ (𝐴 ∈ Pg ↔ ∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥))) |
7 | elpglem3 42255 | . . 3 ⊢ (∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)))) | |
8 | 6, 7 | bitri 263 | . 2 ⊢ (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st ‘𝐴) ∈ 𝒫 𝑥 ∧ (2nd ‘𝐴) ∈ 𝒫 𝑥)))) |
9 | 3anass 1035 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg))) | |
10 | 4, 8, 9 | 3bitr4i 291 | 1 ⊢ (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) ⊆ Pg ∧ (2nd ‘𝐴) ⊆ Pg)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∧ w3a 1031 ∃wex 1695 ∈ wcel 1977 Vcvv 3173 ⊆ wss 3540 𝒫 cpw 4108 ↦ cmpt 4643 × cxp 5036 ‘cfv 5804 1st c1st 7057 2nd c2nd 7058 Pgcpg 42251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-reg 8380 ax-inf2 8421 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-r1 8510 df-rank 8511 df-setrecs 42230 df-pg 42252 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |