 Mathbox for Emmett Weisz < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpglem2 Structured version   Visualization version   GIF version

Theorem elpglem2 42254
 Description: Lemma for elpg 42256. (Contributed by Emmett Weisz, 28-Aug-2021.)
Assertion
Ref Expression
elpglem2 (((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg) → ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elpglem2
StepHypRef Expression
1 fvex 6113 . . . . 5 (1st𝐴) ∈ V
2 fvex 6113 . . . . 5 (2nd𝐴) ∈ V
31, 2unex 6854 . . . 4 ((1st𝐴) ∪ (2nd𝐴)) ∈ V
43isseti 3182 . . 3 𝑥 𝑥 = ((1st𝐴) ∪ (2nd𝐴))
5 sseq1 3589 . . . . . 6 (𝑥 = ((1st𝐴) ∪ (2nd𝐴)) → (𝑥 ⊆ Pg ↔ ((1st𝐴) ∪ (2nd𝐴)) ⊆ Pg))
6 unss 3749 . . . . . 6 (((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg) ↔ ((1st𝐴) ∪ (2nd𝐴)) ⊆ Pg)
75, 6syl6bbr 277 . . . . 5 (𝑥 = ((1st𝐴) ∪ (2nd𝐴)) → (𝑥 ⊆ Pg ↔ ((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg)))
87biimprd 237 . . . 4 (𝑥 = ((1st𝐴) ∪ (2nd𝐴)) → (((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg) → 𝑥 ⊆ Pg))
9 ssun1 3738 . . . . . . 7 (1st𝐴) ⊆ ((1st𝐴) ∪ (2nd𝐴))
10 id 22 . . . . . . 7 (𝑥 = ((1st𝐴) ∪ (2nd𝐴)) → 𝑥 = ((1st𝐴) ∪ (2nd𝐴)))
119, 10syl5sseqr 3617 . . . . . 6 (𝑥 = ((1st𝐴) ∪ (2nd𝐴)) → (1st𝐴) ⊆ 𝑥)
12 vex 3176 . . . . . . 7 𝑥 ∈ V
1312elpw2 4755 . . . . . 6 ((1st𝐴) ∈ 𝒫 𝑥 ↔ (1st𝐴) ⊆ 𝑥)
1411, 13sylibr 223 . . . . 5 (𝑥 = ((1st𝐴) ∪ (2nd𝐴)) → (1st𝐴) ∈ 𝒫 𝑥)
15 ssun2 3739 . . . . . . 7 (2nd𝐴) ⊆ ((1st𝐴) ∪ (2nd𝐴))
1615, 10syl5sseqr 3617 . . . . . 6 (𝑥 = ((1st𝐴) ∪ (2nd𝐴)) → (2nd𝐴) ⊆ 𝑥)
1712elpw2 4755 . . . . . 6 ((2nd𝐴) ∈ 𝒫 𝑥 ↔ (2nd𝐴) ⊆ 𝑥)
1816, 17sylibr 223 . . . . 5 (𝑥 = ((1st𝐴) ∪ (2nd𝐴)) → (2nd𝐴) ∈ 𝒫 𝑥)
1914, 18jca 553 . . . 4 (𝑥 = ((1st𝐴) ∪ (2nd𝐴)) → ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))
208, 19jctird 565 . . 3 (𝑥 = ((1st𝐴) ∪ (2nd𝐴)) → (((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg) → (𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
214, 20eximii 1754 . 2 𝑥(((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg) → (𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)))
222119.37iv 1898 1 (((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg) → ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ∪ cun 3538   ⊆ wss 3540  𝒫 cpw 4108  ‘cfv 5804  1st c1st 7057  2nd c2nd 7058  Pgcpg 42251 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-pw 4110  df-sn 4126  df-pr 4128  df-uni 4373  df-iota 5768  df-fv 5812 This theorem is referenced by:  elpg  42256
 Copyright terms: Public domain W3C validator