Step | Hyp | Ref
| Expression |
1 | | elfvdm 6130 |
. . . . 5
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → 𝑆 ∈ dom ⊥ ) |
2 | | n0i 3879 |
. . . . . . . . 9
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → ¬ ( ⊥
‘𝑆) =
∅) |
3 | | ocvfval.o |
. . . . . . . . . . . 12
⊢ ⊥ =
(ocv‘𝑊) |
4 | | fvprc 6097 |
. . . . . . . . . . . 12
⊢ (¬
𝑊 ∈ V →
(ocv‘𝑊) =
∅) |
5 | 3, 4 | syl5eq 2656 |
. . . . . . . . . . 11
⊢ (¬
𝑊 ∈ V → ⊥ =
∅) |
6 | 5 | fveq1d 6105 |
. . . . . . . . . 10
⊢ (¬
𝑊 ∈ V → ( ⊥
‘𝑆) =
(∅‘𝑆)) |
7 | | 0fv 6137 |
. . . . . . . . . 10
⊢
(∅‘𝑆) =
∅ |
8 | 6, 7 | syl6eq 2660 |
. . . . . . . . 9
⊢ (¬
𝑊 ∈ V → ( ⊥
‘𝑆) =
∅) |
9 | 2, 8 | nsyl2 141 |
. . . . . . . 8
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → 𝑊 ∈ V) |
10 | | ocvfval.v |
. . . . . . . . 9
⊢ 𝑉 = (Base‘𝑊) |
11 | | ocvfval.i |
. . . . . . . . 9
⊢ , =
(·𝑖‘𝑊) |
12 | | ocvfval.f |
. . . . . . . . 9
⊢ 𝐹 = (Scalar‘𝑊) |
13 | | ocvfval.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐹) |
14 | 10, 11, 12, 13, 3 | ocvfval 19829 |
. . . . . . . 8
⊢ (𝑊 ∈ V → ⊥ =
(𝑠 ∈ 𝒫 𝑉 ↦ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑠 (𝑦 , 𝑥) = 0 })) |
15 | 9, 14 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → ⊥ = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑠 (𝑦 , 𝑥) = 0 })) |
16 | 15 | dmeqd 5248 |
. . . . . 6
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → dom ⊥ = dom (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑠 (𝑦 , 𝑥) = 0 })) |
17 | | fvex 6113 |
. . . . . . . . 9
⊢
(Base‘𝑊)
∈ V |
18 | 10, 17 | eqeltri 2684 |
. . . . . . . 8
⊢ 𝑉 ∈ V |
19 | 18 | rabex 4740 |
. . . . . . 7
⊢ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑠 (𝑦 , 𝑥) = 0 } ∈
V |
20 | | eqid 2610 |
. . . . . . 7
⊢ (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑠 (𝑦 , 𝑥) = 0 }) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑠 (𝑦 , 𝑥) = 0 }) |
21 | 19, 20 | dmmpti 5936 |
. . . . . 6
⊢ dom
(𝑠 ∈ 𝒫 𝑉 ↦ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑠 (𝑦 , 𝑥) = 0 }) = 𝒫 𝑉 |
22 | 16, 21 | syl6eq 2660 |
. . . . 5
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → dom ⊥ = 𝒫 𝑉) |
23 | 1, 22 | eleqtrd 2690 |
. . . 4
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → 𝑆 ∈ 𝒫 𝑉) |
24 | 23 | elpwid 4118 |
. . 3
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → 𝑆 ⊆ 𝑉) |
25 | 10, 11, 12, 13, 3 | ocvval 19830 |
. . . . 5
⊢ (𝑆 ⊆ 𝑉 → ( ⊥ ‘𝑆) = {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑆 (𝑦 , 𝑥) = 0 }) |
26 | 25 | eleq2d 2673 |
. . . 4
⊢ (𝑆 ⊆ 𝑉 → (𝐴 ∈ ( ⊥ ‘𝑆) ↔ 𝐴 ∈ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑆 (𝑦 , 𝑥) = 0 })) |
27 | | oveq1 6556 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑦 , 𝑥) = (𝐴 , 𝑥)) |
28 | 27 | eqeq1d 2612 |
. . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑦 , 𝑥) = 0 ↔ (𝐴 , 𝑥) = 0 )) |
29 | 28 | ralbidv 2969 |
. . . . 5
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑆 (𝑦 , 𝑥) = 0 ↔ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 )) |
30 | 29 | elrab 3331 |
. . . 4
⊢ (𝐴 ∈ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑆 (𝑦 , 𝑥) = 0 } ↔ (𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 )) |
31 | 26, 30 | syl6bb 275 |
. . 3
⊢ (𝑆 ⊆ 𝑉 → (𝐴 ∈ ( ⊥ ‘𝑆) ↔ (𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ))) |
32 | 24, 31 | biadan2 672 |
. 2
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ))) |
33 | | 3anass 1035 |
. 2
⊢ ((𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ) ↔ (𝑆 ⊆ 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ))) |
34 | 32, 33 | bitr4i 266 |
1
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 )) |