MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elocv Structured version   Visualization version   GIF version

Theorem elocv 19831
Description: Elementhood in the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v 𝑉 = (Base‘𝑊)
ocvfval.i , = (·𝑖𝑊)
ocvfval.f 𝐹 = (Scalar‘𝑊)
ocvfval.z 0 = (0g𝐹)
ocvfval.o = (ocv‘𝑊)
Assertion
Ref Expression
elocv (𝐴 ∈ ( 𝑆) ↔ (𝑆𝑉𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝑉   𝑥,𝑊   𝑥, ,   𝑥,𝑆
Allowed substitution hints:   𝐹(𝑥)   (𝑥)

Proof of Theorem elocv
Dummy variables 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6130 . . . . 5 (𝐴 ∈ ( 𝑆) → 𝑆 ∈ dom )
2 n0i 3879 . . . . . . . . 9 (𝐴 ∈ ( 𝑆) → ¬ ( 𝑆) = ∅)
3 ocvfval.o . . . . . . . . . . . 12 = (ocv‘𝑊)
4 fvprc 6097 . . . . . . . . . . . 12 𝑊 ∈ V → (ocv‘𝑊) = ∅)
53, 4syl5eq 2656 . . . . . . . . . . 11 𝑊 ∈ V → = ∅)
65fveq1d 6105 . . . . . . . . . 10 𝑊 ∈ V → ( 𝑆) = (∅‘𝑆))
7 0fv 6137 . . . . . . . . . 10 (∅‘𝑆) = ∅
86, 7syl6eq 2660 . . . . . . . . 9 𝑊 ∈ V → ( 𝑆) = ∅)
92, 8nsyl2 141 . . . . . . . 8 (𝐴 ∈ ( 𝑆) → 𝑊 ∈ V)
10 ocvfval.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
11 ocvfval.i . . . . . . . . 9 , = (·𝑖𝑊)
12 ocvfval.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
13 ocvfval.z . . . . . . . . 9 0 = (0g𝐹)
1410, 11, 12, 13, 3ocvfval 19829 . . . . . . . 8 (𝑊 ∈ V → = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }))
159, 14syl 17 . . . . . . 7 (𝐴 ∈ ( 𝑆) → = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }))
1615dmeqd 5248 . . . . . 6 (𝐴 ∈ ( 𝑆) → dom = dom (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }))
17 fvex 6113 . . . . . . . . 9 (Base‘𝑊) ∈ V
1810, 17eqeltri 2684 . . . . . . . 8 𝑉 ∈ V
1918rabex 4740 . . . . . . 7 {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 } ∈ V
20 eqid 2610 . . . . . . 7 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 })
2119, 20dmmpti 5936 . . . . . 6 dom (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦𝑉 ∣ ∀𝑥𝑠 (𝑦 , 𝑥) = 0 }) = 𝒫 𝑉
2216, 21syl6eq 2660 . . . . 5 (𝐴 ∈ ( 𝑆) → dom = 𝒫 𝑉)
231, 22eleqtrd 2690 . . . 4 (𝐴 ∈ ( 𝑆) → 𝑆 ∈ 𝒫 𝑉)
2423elpwid 4118 . . 3 (𝐴 ∈ ( 𝑆) → 𝑆𝑉)
2510, 11, 12, 13, 3ocvval 19830 . . . . 5 (𝑆𝑉 → ( 𝑆) = {𝑦𝑉 ∣ ∀𝑥𝑆 (𝑦 , 𝑥) = 0 })
2625eleq2d 2673 . . . 4 (𝑆𝑉 → (𝐴 ∈ ( 𝑆) ↔ 𝐴 ∈ {𝑦𝑉 ∣ ∀𝑥𝑆 (𝑦 , 𝑥) = 0 }))
27 oveq1 6556 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 , 𝑥) = (𝐴 , 𝑥))
2827eqeq1d 2612 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 , 𝑥) = 0 ↔ (𝐴 , 𝑥) = 0 ))
2928ralbidv 2969 . . . . 5 (𝑦 = 𝐴 → (∀𝑥𝑆 (𝑦 , 𝑥) = 0 ↔ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
3029elrab 3331 . . . 4 (𝐴 ∈ {𝑦𝑉 ∣ ∀𝑥𝑆 (𝑦 , 𝑥) = 0 } ↔ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
3126, 30syl6bb 275 . . 3 (𝑆𝑉 → (𝐴 ∈ ( 𝑆) ↔ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 )))
3224, 31biadan2 672 . 2 (𝐴 ∈ ( 𝑆) ↔ (𝑆𝑉 ∧ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 )))
33 3anass 1035 . 2 ((𝑆𝑉𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ) ↔ (𝑆𝑉 ∧ (𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 )))
3432, 33bitr4i 266 1 (𝐴 ∈ ( 𝑆) ↔ (𝑆𝑉𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108  cmpt 4643  dom cdm 5038  cfv 5804  (class class class)co 6549  Basecbs 15695  Scalarcsca 15771  ·𝑖cip 15773  0gc0g 15923  ocvcocv 19823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-ocv 19826
This theorem is referenced by:  ocvi  19832  ocvss  19833  ocvocv  19834  ocvlss  19835  ocv2ss  19836  unocv  19843  iunocv  19844  obselocv  19891  clsocv  22857  pjthlem2  23017
  Copyright terms: Public domain W3C validator