Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  obselocv Structured version   Visualization version   GIF version

Theorem obselocv 19891
 Description: A basis element is in the orthocomplement of a subset of the basis iff it is not in the subset. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
obselocv.o = (ocv‘𝑊)
Assertion
Ref Expression
obselocv ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) ↔ ¬ 𝐴𝐶))

Proof of Theorem obselocv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . . 7 (0g𝑊) = (0g𝑊)
21obsne0 19888 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → 𝐴 ≠ (0g𝑊))
323adant2 1073 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐴 ≠ (0g𝑊))
4 elin 3758 . . . . . . . 8 (𝐴 ∈ (𝐶 ∩ ( 𝐶)) ↔ (𝐴𝐶𝐴 ∈ ( 𝐶)))
5 obsrcl 19886 . . . . . . . . . . . . . 14 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)
653ad2ant1 1075 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝑊 ∈ PreHil)
7 phllmod 19794 . . . . . . . . . . . . 13 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
86, 7syl 17 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝑊 ∈ LMod)
9 simp2 1055 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐶𝐵)
10 eqid 2610 . . . . . . . . . . . . . . 15 (Base‘𝑊) = (Base‘𝑊)
1110obsss 19887 . . . . . . . . . . . . . 14 (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊))
12113ad2ant1 1075 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐵 ⊆ (Base‘𝑊))
139, 12sstrd 3578 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐶 ⊆ (Base‘𝑊))
14 eqid 2610 . . . . . . . . . . . . 13 (LSpan‘𝑊) = (LSpan‘𝑊)
1510, 14lspssid 18806 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐶 ⊆ (Base‘𝑊)) → 𝐶 ⊆ ((LSpan‘𝑊)‘𝐶))
168, 13, 15syl2anc 691 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐶 ⊆ ((LSpan‘𝑊)‘𝐶))
17 ssrin 3800 . . . . . . . . . . 11 (𝐶 ⊆ ((LSpan‘𝑊)‘𝐶) → (𝐶 ∩ ( 𝐶)) ⊆ (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)))
1816, 17syl 17 . . . . . . . . . 10 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐶 ∩ ( 𝐶)) ⊆ (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)))
19 obselocv.o . . . . . . . . . . . . . 14 = (ocv‘𝑊)
2010, 19, 14ocvlsp 19839 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝐶 ⊆ (Base‘𝑊)) → ( ‘((LSpan‘𝑊)‘𝐶)) = ( 𝐶))
216, 13, 20syl2anc 691 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ( ‘((LSpan‘𝑊)‘𝐶)) = ( 𝐶))
2221ineq2d 3776 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ‘((LSpan‘𝑊)‘𝐶))) = (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)))
23 eqid 2610 . . . . . . . . . . . . . 14 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2410, 23, 14lspcl 18797 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐶 ⊆ (Base‘𝑊)) → ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊))
258, 13, 24syl2anc 691 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊))
2619, 23, 1ocvin 19837 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊)) → (((LSpan‘𝑊)‘𝐶) ∩ ( ‘((LSpan‘𝑊)‘𝐶))) = {(0g𝑊)})
276, 25, 26syl2anc 691 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ‘((LSpan‘𝑊)‘𝐶))) = {(0g𝑊)})
2822, 27eqtr3d 2646 . . . . . . . . . 10 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)) = {(0g𝑊)})
2918, 28sseqtrd 3604 . . . . . . . . 9 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐶 ∩ ( 𝐶)) ⊆ {(0g𝑊)})
3029sseld 3567 . . . . . . . 8 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ (𝐶 ∩ ( 𝐶)) → 𝐴 ∈ {(0g𝑊)}))
314, 30syl5bir 232 . . . . . . 7 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ((𝐴𝐶𝐴 ∈ ( 𝐶)) → 𝐴 ∈ {(0g𝑊)}))
32 elsni 4142 . . . . . . 7 (𝐴 ∈ {(0g𝑊)} → 𝐴 = (0g𝑊))
3331, 32syl6 34 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ((𝐴𝐶𝐴 ∈ ( 𝐶)) → 𝐴 = (0g𝑊)))
3433necon3ad 2795 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ≠ (0g𝑊) → ¬ (𝐴𝐶𝐴 ∈ ( 𝐶))))
353, 34mpd 15 . . . 4 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ¬ (𝐴𝐶𝐴 ∈ ( 𝐶)))
36 imnan 437 . . . 4 ((𝐴𝐶 → ¬ 𝐴 ∈ ( 𝐶)) ↔ ¬ (𝐴𝐶𝐴 ∈ ( 𝐶)))
3735, 36sylibr 223 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴𝐶 → ¬ 𝐴 ∈ ( 𝐶)))
3837con2d 128 . 2 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) → ¬ 𝐴𝐶))
39 simpr 476 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝑥𝐶)
40 eleq1 2676 . . . . . . 7 (𝐴 = 𝑥 → (𝐴𝐶𝑥𝐶))
4139, 40syl5ibrcom 236 . . . . . 6 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (𝐴 = 𝑥𝐴𝐶))
4241con3d 147 . . . . 5 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (¬ 𝐴𝐶 → ¬ 𝐴 = 𝑥))
43 simpl1 1057 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝐵 ∈ (OBasis‘𝑊))
44 simpl3 1059 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝐴𝐵)
459sselda 3568 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝑥𝐵)
46 eqid 2610 . . . . . . . 8 (·𝑖𝑊) = (·𝑖𝑊)
47 eqid 2610 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
48 eqid 2610 . . . . . . . 8 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
49 eqid 2610 . . . . . . . 8 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
5010, 46, 47, 48, 49obsip 19884 . . . . . . 7 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵𝑥𝐵) → (𝐴(·𝑖𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))))
5143, 44, 45, 50syl3anc 1318 . . . . . 6 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (𝐴(·𝑖𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))))
52 iffalse 4045 . . . . . . 7 𝐴 = 𝑥 → if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5352eqeq2d 2620 . . . . . 6 𝐴 = 𝑥 → ((𝐴(·𝑖𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ↔ (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
5451, 53syl5ibcom 234 . . . . 5 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (¬ 𝐴 = 𝑥 → (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
5542, 54syld 46 . . . 4 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (¬ 𝐴𝐶 → (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
5655ralrimdva 2952 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (¬ 𝐴𝐶 → ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
57 simp3 1056 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐴𝐵)
5812, 57sseldd 3569 . . . 4 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐴 ∈ (Base‘𝑊))
5910, 46, 47, 49, 19elocv 19831 . . . . . 6 (𝐴 ∈ ( 𝐶) ↔ (𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
60 df-3an 1033 . . . . . 6 ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))) ↔ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6159, 60bitri 263 . . . . 5 (𝐴 ∈ ( 𝐶) ↔ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6261baib 942 . . . 4 ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) → (𝐴 ∈ ( 𝐶) ↔ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6313, 58, 62syl2anc 691 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) ↔ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6456, 63sylibrd 248 . 2 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (¬ 𝐴𝐶𝐴 ∈ ( 𝐶)))
6538, 64impbid 201 1 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) ↔ ¬ 𝐴𝐶))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896   ∩ cin 3539   ⊆ wss 3540  ifcif 4036  {csn 4125  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  Scalarcsca 15771  ·𝑖cip 15773  0gc0g 15923  1rcur 18324  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  PreHilcphl 19788  ocvcocv 19823  OBasiscobs 19865 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-ghm 17481  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-rnghom 18538  df-drng 18572  df-staf 18668  df-srng 18669  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lmhm 18843  df-lvec 18924  df-sra 18993  df-rgmod 18994  df-phl 19790  df-ocv 19826  df-obs 19868 This theorem is referenced by:  obs2ss  19892  obslbs  19893
 Copyright terms: Public domain W3C validator