MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elocv Structured version   Unicode version

Theorem elocv 18506
Description: Elementhood in the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v  |-  V  =  ( Base `  W
)
ocvfval.i  |-  .,  =  ( .i `  W )
ocvfval.f  |-  F  =  (Scalar `  W )
ocvfval.z  |-  .0.  =  ( 0g `  F )
ocvfval.o  |-  ._|_  =  ( ocv `  W )
Assertion
Ref Expression
elocv  |-  ( A  e.  (  ._|_  `  S
)  <->  ( S  C_  V  /\  A  e.  V  /\  A. x  e.  S  ( A  .,  x )  =  .0.  ) )
Distinct variable groups:    x,  .0.    x, A    x, V    x, W    x,  .,    x, S
Allowed substitution hints:    F( x)    ._|_ ( x)

Proof of Theorem elocv
Dummy variables  s 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 5892 . . . . 5  |-  ( A  e.  (  ._|_  `  S
)  ->  S  e.  dom  ._|_  )
2 n0i 3790 . . . . . . . . 9  |-  ( A  e.  (  ._|_  `  S
)  ->  -.  (  ._|_  `  S )  =  (/) )
3 ocvfval.o . . . . . . . . . . . 12  |-  ._|_  =  ( ocv `  W )
4 fvprc 5860 . . . . . . . . . . . 12  |-  ( -.  W  e.  _V  ->  ( ocv `  W )  =  (/) )
53, 4syl5eq 2520 . . . . . . . . . . 11  |-  ( -.  W  e.  _V  ->  ._|_ 
=  (/) )
65fveq1d 5868 . . . . . . . . . 10  |-  ( -.  W  e.  _V  ->  ( 
._|_  `  S )  =  ( (/) `  S ) )
7 0fv 5899 . . . . . . . . . 10  |-  ( (/) `  S )  =  (/)
86, 7syl6eq 2524 . . . . . . . . 9  |-  ( -.  W  e.  _V  ->  ( 
._|_  `  S )  =  (/) )
92, 8nsyl2 127 . . . . . . . 8  |-  ( A  e.  (  ._|_  `  S
)  ->  W  e.  _V )
10 ocvfval.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
11 ocvfval.i . . . . . . . . 9  |-  .,  =  ( .i `  W )
12 ocvfval.f . . . . . . . . 9  |-  F  =  (Scalar `  W )
13 ocvfval.z . . . . . . . . 9  |-  .0.  =  ( 0g `  F )
1410, 11, 12, 13, 3ocvfval 18504 . . . . . . . 8  |-  ( W  e.  _V  ->  ._|_  =  ( s  e.  ~P V  |->  { y  e.  V  |  A. x  e.  s  ( y  .,  x )  =  .0. 
} ) )
159, 14syl 16 . . . . . . 7  |-  ( A  e.  (  ._|_  `  S
)  ->  ._|_  =  ( s  e.  ~P V  |->  { y  e.  V  |  A. x  e.  s  ( y  .,  x
)  =  .0.  }
) )
1615dmeqd 5205 . . . . . 6  |-  ( A  e.  (  ._|_  `  S
)  ->  dom  ._|_  =  dom  ( s  e.  ~P V  |->  { y  e.  V  |  A. x  e.  s  ( y  .,  x )  =  .0. 
} ) )
17 fvex 5876 . . . . . . . . 9  |-  ( Base `  W )  e.  _V
1810, 17eqeltri 2551 . . . . . . . 8  |-  V  e. 
_V
1918rabex 4598 . . . . . . 7  |-  { y  e.  V  |  A. x  e.  s  (
y  .,  x )  =  .0.  }  e.  _V
20 eqid 2467 . . . . . . 7  |-  ( s  e.  ~P V  |->  { y  e.  V  |  A. x  e.  s 
( y  .,  x
)  =  .0.  }
)  =  ( s  e.  ~P V  |->  { y  e.  V  |  A. x  e.  s 
( y  .,  x
)  =  .0.  }
)
2119, 20dmmpti 5710 . . . . . 6  |-  dom  (
s  e.  ~P V  |->  { y  e.  V  |  A. x  e.  s  ( y  .,  x
)  =  .0.  }
)  =  ~P V
2216, 21syl6eq 2524 . . . . 5  |-  ( A  e.  (  ._|_  `  S
)  ->  dom  ._|_  =  ~P V )
231, 22eleqtrd 2557 . . . 4  |-  ( A  e.  (  ._|_  `  S
)  ->  S  e.  ~P V )
2423elpwid 4020 . . 3  |-  ( A  e.  (  ._|_  `  S
)  ->  S  C_  V
)
2510, 11, 12, 13, 3ocvval 18505 . . . . 5  |-  ( S 
C_  V  ->  (  ._|_  `  S )  =  { y  e.  V  |  A. x  e.  S  ( y  .,  x
)  =  .0.  }
)
2625eleq2d 2537 . . . 4  |-  ( S 
C_  V  ->  ( A  e.  (  ._|_  `  S )  <->  A  e.  { y  e.  V  |  A. x  e.  S  ( y  .,  x
)  =  .0.  }
) )
27 oveq1 6292 . . . . . . 7  |-  ( y  =  A  ->  (
y  .,  x )  =  ( A  .,  x ) )
2827eqeq1d 2469 . . . . . 6  |-  ( y  =  A  ->  (
( y  .,  x
)  =  .0.  <->  ( A  .,  x )  =  .0.  ) )
2928ralbidv 2903 . . . . 5  |-  ( y  =  A  ->  ( A. x  e.  S  ( y  .,  x
)  =  .0.  <->  A. x  e.  S  ( A  .,  x )  =  .0.  ) )
3029elrab 3261 . . . 4  |-  ( A  e.  { y  e.  V  |  A. x  e.  S  ( y  .,  x )  =  .0. 
}  <->  ( A  e.  V  /\  A. x  e.  S  ( A  .,  x )  =  .0.  ) )
3126, 30syl6bb 261 . . 3  |-  ( S 
C_  V  ->  ( A  e.  (  ._|_  `  S )  <->  ( A  e.  V  /\  A. x  e.  S  ( A  .,  x )  =  .0.  ) ) )
3224, 31biadan2 642 . 2  |-  ( A  e.  (  ._|_  `  S
)  <->  ( S  C_  V  /\  ( A  e.  V  /\  A. x  e.  S  ( A  .,  x )  =  .0.  ) ) )
33 3anass 977 . 2  |-  ( ( S  C_  V  /\  A  e.  V  /\  A. x  e.  S  ( A  .,  x )  =  .0.  )  <->  ( S  C_  V  /\  ( A  e.  V  /\  A. x  e.  S  ( A  .,  x )  =  .0.  ) ) )
3432, 33bitr4i 252 1  |-  ( A  e.  (  ._|_  `  S
)  <->  ( S  C_  V  /\  A  e.  V  /\  A. x  e.  S  ( A  .,  x )  =  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818   _Vcvv 3113    C_ wss 3476   (/)c0 3785   ~Pcpw 4010    |-> cmpt 4505   dom cdm 4999   ` cfv 5588  (class class class)co 6285   Basecbs 14493  Scalarcsca 14561   .icip 14563   0gc0g 14698   ocvcocv 18498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-fv 5596  df-ov 6288  df-ocv 18501
This theorem is referenced by:  ocvi  18507  ocvss  18508  ocvocv  18509  ocvlss  18510  ocv2ss  18511  unocv  18518  iunocv  18519  obselocv  18566  clsocv  21517  pjthlem2  21680
  Copyright terms: Public domain W3C validator