Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elicc3 Structured version   Visualization version   GIF version

Theorem elicc3 31481
Description: An equivalent membership condition for closed intervals. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
elicc3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))

Proof of Theorem elicc3
StepHypRef Expression
1 elicc1 12090 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
2 simp1 1054 . . . . 5 ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶 ∈ ℝ*)
32a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶 ∈ ℝ*))
4 xrletr 11865 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝐶𝐶𝐵) → 𝐴𝐵))
54exp5o 1278 . . . . . 6 (𝐴 ∈ ℝ* → (𝐶 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴𝐶 → (𝐶𝐵𝐴𝐵)))))
65com23 84 . . . . 5 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐶 ∈ ℝ* → (𝐴𝐶 → (𝐶𝐵𝐴𝐵)))))
76imp5q 31476 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐴𝐵))
8 df-ne 2782 . . . . . . . . . 10 (𝐶𝐴 ↔ ¬ 𝐶 = 𝐴)
9 xrleltne 11854 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → (𝐴 < 𝐶𝐶𝐴))
109biimprd 237 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → (𝐶𝐴𝐴 < 𝐶))
118, 10syl5bir 232 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → (¬ 𝐶 = 𝐴𝐴 < 𝐶))
12113adant3r3 1268 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐴𝐴 < 𝐶))
1312adantlr 747 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐴𝐴 < 𝐶))
14 eqcom 2617 . . . . . . . . . . . . . 14 (𝐶 = 𝐵𝐵 = 𝐶)
1514necon3bbii 2829 . . . . . . . . . . . . 13 𝐶 = 𝐵𝐵𝐶)
16 xrleltne 11854 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → (𝐶 < 𝐵𝐵𝐶))
1716biimprd 237 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → (𝐵𝐶𝐶 < 𝐵))
1815, 17syl5bi 231 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
19183exp 1256 . . . . . . . . . . 11 (𝐶 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐶𝐵 → (¬ 𝐶 = 𝐵𝐶 < 𝐵))))
2019com12 32 . . . . . . . . . 10 (𝐵 ∈ ℝ* → (𝐶 ∈ ℝ* → (𝐶𝐵 → (¬ 𝐶 = 𝐵𝐶 < 𝐵))))
2120imp32 448 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ*𝐶𝐵)) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
22213adantr2 1214 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
2322adantll 746 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
2413, 23anim12d 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → ((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)))
2524ex 449 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → ((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵))))
26 df-or 384 . . . . . 6 ((𝐶 = 𝐴 ∨ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
27 3orass 1034 . . . . . 6 ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) ↔ (𝐶 = 𝐴 ∨ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
28 pm5.6 949 . . . . . . 7 (((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)) ↔ (¬ 𝐶 = 𝐴 → (𝐶 = 𝐵 ∨ (𝐴 < 𝐶𝐶 < 𝐵))))
29 orcom 401 . . . . . . . 8 ((𝐶 = 𝐵 ∨ (𝐴 < 𝐶𝐶 < 𝐵)) ↔ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))
3029imbi2i 325 . . . . . . 7 ((¬ 𝐶 = 𝐴 → (𝐶 = 𝐵 ∨ (𝐴 < 𝐶𝐶 < 𝐵))) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
3128, 30bitri 263 . . . . . 6 (((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
3226, 27, 313bitr4ri 292 . . . . 5 (((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)) ↔ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))
3325, 32syl6ib 240 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
343, 7, 333jcad 1236 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
35 simp1 1054 . . . . 5 ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ ℝ*)
3635a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ ℝ*))
37 xrleid 11859 . . . . . . . . 9 (𝐴 ∈ ℝ*𝐴𝐴)
3837ad3antrrr 762 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴𝐴)
39 breq2 4587 . . . . . . . 8 (𝐶 = 𝐴 → (𝐴𝐶𝐴𝐴))
4038, 39syl5ibrcom 236 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐴𝐴𝐶))
41 xrltle 11858 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶𝐴𝐶))
4241adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 < 𝐶𝐴𝐶))
4342adantllr 751 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 < 𝐶𝐴𝐶))
4443adantrd 483 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐴𝐶))
45 simpr 476 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴𝐵)
46 breq2 4587 . . . . . . . 8 (𝐶 = 𝐵 → (𝐴𝐶𝐴𝐵))
4745, 46syl5ibrcom 236 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐵𝐴𝐶))
4840, 44, 473jaod 1384 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐴𝐶))
4948exp31 628 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ ℝ* → (𝐴𝐵 → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐴𝐶))))
50493impd 1273 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐴𝐶))
51 breq1 4586 . . . . . . . 8 (𝐶 = 𝐴 → (𝐶𝐵𝐴𝐵))
5245, 51syl5ibrcom 236 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐴𝐶𝐵))
53 xrltle 11858 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 < 𝐵𝐶𝐵))
5453ancoms 468 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < 𝐵𝐶𝐵))
5554adantld 482 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐶𝐵))
5655adantll 746 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐶𝐵))
5756adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐶𝐵))
58 xrleid 11859 . . . . . . . . 9 (𝐵 ∈ ℝ*𝐵𝐵)
5958ad3antlr 763 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵𝐵)
60 breq1 4586 . . . . . . . 8 (𝐶 = 𝐵 → (𝐶𝐵𝐵𝐵))
6159, 60syl5ibrcom 236 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐵𝐶𝐵))
6252, 57, 613jaod 1384 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐶𝐵))
6362exp31 628 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ ℝ* → (𝐴𝐵 → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐶𝐵))))
64633impd 1273 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶𝐵))
6536, 50, 643jcad 1236 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
6634, 65impbid 201 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
671, 66bitrd 267 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3o 1030  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  *cxr 9952   < clt 9953  cle 9954  [,]cicc 12049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-icc 12053
This theorem is referenced by:  ivthALT  31500
  Copyright terms: Public domain W3C validator