Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elicc3 Structured version   Unicode version

Theorem elicc3 30378
Description: An equivalent membership condition for closed intervals. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
elicc3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) ) )

Proof of Theorem elicc3
StepHypRef Expression
1 elicc1 11576 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B
) ) )
2 simp1 994 . . . . 5  |-  ( ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  ->  C  e.  RR* )
32a1i 11 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  ->  C  e.  RR* ) )
4 xrletr 11364 . . . . . . 7  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <_  C  /\  C  <_  B )  ->  A  <_  B
) )
54exp5o 1213 . . . . . 6  |-  ( A  e.  RR*  ->  ( C  e.  RR*  ->  ( B  e.  RR*  ->  ( A  <_  C  ->  ( C  <_  B  ->  A  <_  B ) ) ) ) )
65com23 78 . . . . 5  |-  ( A  e.  RR*  ->  ( B  e.  RR*  ->  ( C  e.  RR*  ->  ( A  <_  C  ->  ( C  <_  B  ->  A  <_  B ) ) ) ) )
76imp5q 30373 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  ->  A  <_  B ) )
8 df-ne 2651 . . . . . . . . . 10  |-  ( C  =/=  A  <->  -.  C  =  A )
9 xrleltne 11354 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  A  <_  C )  ->  ( A  <  C  <->  C  =/=  A ) )
109biimprd 223 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  A  <_  C )  ->  ( C  =/=  A  ->  A  <  C ) )
118, 10syl5bir 218 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  A  <_  C )  ->  ( -.  C  =  A  ->  A  <  C ) )
12113adant3r3 1205 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )  -> 
( -.  C  =  A  ->  A  <  C ) )
1312adantlr 712 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )  ->  ( -.  C  =  A  ->  A  < 
C ) )
14 eqcom 2463 . . . . . . . . . . . . . 14  |-  ( C  =  B  <->  B  =  C )
1514necon3bbii 2715 . . . . . . . . . . . . 13  |-  ( -.  C  =  B  <->  B  =/=  C )
16 xrleltne 11354 . . . . . . . . . . . . . 14  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  C  <_  B )  ->  ( C  <  B  <->  B  =/=  C ) )
1716biimprd 223 . . . . . . . . . . . . 13  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  C  <_  B )  ->  ( B  =/=  C  ->  C  <  B ) )
1815, 17syl5bi 217 . . . . . . . . . . . 12  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  C  <_  B )  ->  ( -.  C  =  B  ->  C  <  B ) )
19183exp 1193 . . . . . . . . . . 11  |-  ( C  e.  RR*  ->  ( B  e.  RR*  ->  ( C  <_  B  ->  ( -.  C  =  B  ->  C  <  B ) ) ) )
2019com12 31 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  ( C  e.  RR*  ->  ( C  <_  B  ->  ( -.  C  =  B  ->  C  <  B ) ) ) )
2120imp32 431 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  ( C  e.  RR*  /\  C  <_  B ) )  -> 
( -.  C  =  B  ->  C  <  B ) )
22213adantr2 1154 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )  -> 
( -.  C  =  B  ->  C  <  B ) )
2322adantll 711 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )  ->  ( -.  C  =  B  ->  C  < 
B ) )
2413, 23anim12d 561 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )  ->  ( ( -.  C  =  A  /\  -.  C  =  B
)  ->  ( A  <  C  /\  C  < 
B ) ) )
2524ex 432 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  -> 
( ( -.  C  =  A  /\  -.  C  =  B )  ->  ( A  <  C  /\  C  <  B ) ) ) )
26 df-or 368 . . . . . 6  |-  ( ( C  =  A  \/  ( ( A  < 
C  /\  C  <  B )  \/  C  =  B ) )  <->  ( -.  C  =  A  ->  ( ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) )
27 3orass 974 . . . . . 6  |-  ( ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B )  <-> 
( C  =  A  \/  ( ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) )
28 pm5.6 910 . . . . . . 7  |-  ( ( ( -.  C  =  A  /\  -.  C  =  B )  ->  ( A  <  C  /\  C  <  B ) )  <->  ( -.  C  =  A  ->  ( C  =  B  \/  ( A  <  C  /\  C  <  B ) ) ) )
29 orcom 385 . . . . . . . 8  |-  ( ( C  =  B  \/  ( A  <  C  /\  C  <  B ) )  <-> 
( ( A  < 
C  /\  C  <  B )  \/  C  =  B ) )
3029imbi2i 310 . . . . . . 7  |-  ( ( -.  C  =  A  ->  ( C  =  B  \/  ( A  <  C  /\  C  <  B ) ) )  <-> 
( -.  C  =  A  ->  ( ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) )
3128, 30bitri 249 . . . . . 6  |-  ( ( ( -.  C  =  A  /\  -.  C  =  B )  ->  ( A  <  C  /\  C  <  B ) )  <->  ( -.  C  =  A  ->  ( ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) )
3226, 27, 313bitr4ri 278 . . . . 5  |-  ( ( ( -.  C  =  A  /\  -.  C  =  B )  ->  ( A  <  C  /\  C  <  B ) )  <->  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )
3325, 32syl6ib 226 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  -> 
( C  =  A  \/  ( A  < 
C  /\  C  <  B )  \/  C  =  B ) ) )
343, 7, 333jcad 1175 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  -> 
( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) ) )
35 simp1 994 . . . . 5  |-  ( ( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )  ->  C  e.  RR* )
3635a1i 11 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )  ->  C  e.  RR* ) )
37 xrleid 11359 . . . . . . . . 9  |-  ( A  e.  RR*  ->  A  <_  A )
3837ad3antrrr 727 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  A  <_  A )
39 breq2 4443 . . . . . . . 8  |-  ( C  =  A  ->  ( A  <_  C  <->  A  <_  A ) )
4038, 39syl5ibrcom 222 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  ( C  =  A  ->  A  <_  C ) )
41 xrltle 11358 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A  <  C  ->  A  <_  C ) )
4241adantr 463 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A  < 
C  ->  A  <_  C ) )
4342adantllr 716 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  ( A  <  C  ->  A  <_  C ) )
4443adantrd 466 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  (
( A  <  C  /\  C  <  B )  ->  A  <_  C
) )
45 simpr 459 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  A  <_  B )
46 breq2 4443 . . . . . . . 8  |-  ( C  =  B  ->  ( A  <_  C  <->  A  <_  B ) )
4745, 46syl5ibrcom 222 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  ( C  =  B  ->  A  <_  C ) )
4840, 44, 473jaod 1290 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  (
( C  =  A  \/  ( A  < 
C  /\  C  <  B )  \/  C  =  B )  ->  A  <_  C ) )
4948exp31 602 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  RR*  ->  ( A  <_  B  ->  (
( C  =  A  \/  ( A  < 
C  /\  C  <  B )  \/  C  =  B )  ->  A  <_  C ) ) ) )
50493impd 1208 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )  ->  A  <_  C ) )
51 breq1 4442 . . . . . . . 8  |-  ( C  =  A  ->  ( C  <_  B  <->  A  <_  B ) )
5245, 51syl5ibrcom 222 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  ( C  =  A  ->  C  <_  B ) )
53 xrltle 11358 . . . . . . . . . . 11  |-  ( ( C  e.  RR*  /\  B  e.  RR* )  ->  ( C  <  B  ->  C  <_  B ) )
5453ancoms 451 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( C  <  B  ->  C  <_  B ) )
5554adantld 465 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  (
( A  <  C  /\  C  <  B )  ->  C  <_  B
) )
5655adantll 711 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  C  e.  RR* )  ->  ( ( A  < 
C  /\  C  <  B )  ->  C  <_  B ) )
5756adantr 463 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  (
( A  <  C  /\  C  <  B )  ->  C  <_  B
) )
58 xrleid 11359 . . . . . . . . 9  |-  ( B  e.  RR*  ->  B  <_  B )
5958ad3antlr 728 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  B  <_  B )
60 breq1 4442 . . . . . . . 8  |-  ( C  =  B  ->  ( C  <_  B  <->  B  <_  B ) )
6159, 60syl5ibrcom 222 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  ( C  =  B  ->  C  <_  B ) )
6252, 57, 613jaod 1290 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  C  e. 
RR* )  /\  A  <_  B )  ->  (
( C  =  A  \/  ( A  < 
C  /\  C  <  B )  \/  C  =  B )  ->  C  <_  B ) )
6362exp31 602 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  RR*  ->  ( A  <_  B  ->  (
( C  =  A  \/  ( A  < 
C  /\  C  <  B )  \/  C  =  B )  ->  C  <_  B ) ) ) )
64633impd 1208 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )  ->  C  <_  B ) )
6536, 50, 643jcad 1175 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) )  ->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) ) )
6634, 65impbid 191 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  <->  ( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) ) )
671, 66bitrd 253 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    \/ w3o 970    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   class class class wbr 4439  (class class class)co 6270   RR*cxr 9616    < clt 9617    <_ cle 9618   [,]cicc 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-pre-lttri 9555  ax-pre-lttrn 9556
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-icc 11539
This theorem is referenced by:  ivthALT  30396
  Copyright terms: Public domain W3C validator