Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigolo1 Structured version   Visualization version   GIF version

Theorem elbigolo1 42149
Description: A function (into the positive reals) is of order G(x) iff the quotient of the function and G(x) (also a function into the positive reals) is an eventually upper bounded function. (Contributed by AV, 20-May-2020.)
Assertion
Ref Expression
elbigolo1 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 /f 𝐺) ∈ ≤𝑂(1)))

Proof of Theorem elbigolo1
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+)
2 rpssre 11719 . . . . . . . . . . . . 13 + ⊆ ℝ
32a1i 11 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℝ+ → ℝ+ ⊆ ℝ)
41, 3fssd 5970 . . . . . . . . . . 11 (𝐹:𝐴⟶ℝ+𝐹:𝐴⟶ℝ)
543ad2ant3 1077 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐹:𝐴⟶ℝ)
65adantr 480 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐹:𝐴⟶ℝ)
76ffvelrnda 6267 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
8 simplrr 797 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → 𝑚 ∈ ℝ)
9 simpl2 1058 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐺:𝐴⟶ℝ+)
109ffvelrnda 6267 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (𝐺𝑦) ∈ ℝ+)
1110rpregt0d 11754 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦)))
127, 8, 113jca 1235 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹𝑦) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦))))
13 ledivmul2 10781 . . . . . . . 8 (((𝐹𝑦) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦))) → (((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚 ↔ (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
1413bicomd 212 . . . . . . 7 (((𝐹𝑦) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦))) → ((𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚))
1512, 14syl 17 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚))
16 id 22 . . . . . . . . . . . . 13 (𝐺:𝐴⟶ℝ+𝐺:𝐴⟶ℝ+)
172a1i 11 . . . . . . . . . . . . 13 (𝐺:𝐴⟶ℝ+ → ℝ+ ⊆ ℝ)
1816, 17fssd 5970 . . . . . . . . . . . 12 (𝐺:𝐴⟶ℝ+𝐺:𝐴⟶ℝ)
19183ad2ant2 1076 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐺:𝐴⟶ℝ)
20 reex 9906 . . . . . . . . . . . . 13 ℝ ∈ V
2120ssex 4730 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
22213ad2ant1 1075 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 ∈ V)
235, 19, 223jca 1235 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V))
2423adantr 480 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V))
2524adantr 480 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V))
26 ffun 5961 . . . . . . . . . . . . . . . 16 (𝐺:𝐴⟶ℝ+ → Fun 𝐺)
2726adantl 481 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → Fun 𝐺)
2821anim1i 590 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐴 ∈ V ∧ 𝐺:𝐴⟶ℝ+))
2928ancomd 466 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺:𝐴⟶ℝ+𝐴 ∈ V))
30 fex 6394 . . . . . . . . . . . . . . . 16 ((𝐺:𝐴⟶ℝ+𝐴 ∈ V) → 𝐺 ∈ V)
3129, 30syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 𝐺 ∈ V)
32 0red 9920 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 0 ∈ ℝ)
33 frn 5966 . . . . . . . . . . . . . . . . 17 (𝐺:𝐴⟶ℝ+ → ran 𝐺 ⊆ ℝ+)
34 0nrp 11741 . . . . . . . . . . . . . . . . . . 19 ¬ 0 ∈ ℝ+
35 id 22 . . . . . . . . . . . . . . . . . . . 20 (ran 𝐺 ⊆ ℝ+ → ran 𝐺 ⊆ ℝ+)
3635ssneld 3570 . . . . . . . . . . . . . . . . . . 19 (ran 𝐺 ⊆ ℝ+ → (¬ 0 ∈ ℝ+ → ¬ 0 ∈ ran 𝐺))
3734, 36mpi 20 . . . . . . . . . . . . . . . . . 18 (ran 𝐺 ⊆ ℝ+ → ¬ 0 ∈ ran 𝐺)
38 df-nel 2783 . . . . . . . . . . . . . . . . . 18 (0 ∉ ran 𝐺 ↔ ¬ 0 ∈ ran 𝐺)
3937, 38sylibr 223 . . . . . . . . . . . . . . . . 17 (ran 𝐺 ⊆ ℝ+ → 0 ∉ ran 𝐺)
4033, 39syl 17 . . . . . . . . . . . . . . . 16 (𝐺:𝐴⟶ℝ+ → 0 ∉ ran 𝐺)
4140adantl 481 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 0 ∉ ran 𝐺)
42 suppdm 42094 . . . . . . . . . . . . . . 15 (((Fun 𝐺𝐺 ∈ V ∧ 0 ∈ ℝ) ∧ 0 ∉ ran 𝐺) → (𝐺 supp 0) = dom 𝐺)
4327, 31, 32, 41, 42syl31anc 1321 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺 supp 0) = dom 𝐺)
44 fdm 5964 . . . . . . . . . . . . . . 15 (𝐺:𝐴⟶ℝ+ → dom 𝐺 = 𝐴)
4544adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → dom 𝐺 = 𝐴)
4643, 45eqtrd 2644 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺 supp 0) = 𝐴)
47463adant3 1074 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐺 supp 0) = 𝐴)
4847eqcomd 2616 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 = (𝐺 supp 0))
4948adantr 480 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐴 = (𝐺 supp 0))
5049eleq2d 2673 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑦𝐴𝑦 ∈ (𝐺 supp 0)))
5150biimpa 500 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → 𝑦 ∈ (𝐺 supp 0))
52 refdivmptfv 42138 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑦) = ((𝐹𝑦) / (𝐺𝑦)))
5325, 51, 52syl2anc 691 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹 /f 𝐺)‘𝑦) = ((𝐹𝑦) / (𝐺𝑦)))
5453breq1d 4593 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚 ↔ ((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚))
5515, 54bitr4d 270 . . . . 5 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚))
5655imbi2d 329 . . . 4 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
5756ralbidva 2968 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
58572rexbidva 3038 . 2 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
59 simp1 1054 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 ⊆ ℝ)
60 ssid 3587 . . . 4 𝐴𝐴
6160a1i 11 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴𝐴)
62 elbigo2 42144 . . 3 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐴⟶ℝ ∧ 𝐴𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
6319, 59, 5, 61, 62syl22anc 1319 . 2 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
64 refdivmptf 42134 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ)
6523, 64syl 17 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ)
6644eqcomd 2616 . . . . . . 7 (𝐺:𝐴⟶ℝ+𝐴 = dom 𝐺)
67663ad2ant2 1076 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 = dom 𝐺)
68 simpr 476 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 𝐺:𝐴⟶ℝ+)
6921adantr 480 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 𝐴 ∈ V)
7068, 69, 30syl2anc 691 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 𝐺 ∈ V)
7127, 70, 32, 41, 42syl31anc 1321 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺 supp 0) = dom 𝐺)
72713adant3 1074 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐺 supp 0) = dom 𝐺)
7367, 72eqtr4d 2647 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 = (𝐺 supp 0))
7473feq2d 5944 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → ((𝐹 /f 𝐺):𝐴⟶ℝ ↔ (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ))
7565, 74mpbird 246 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 /f 𝐺):𝐴⟶ℝ)
76 ello12 14095 . . 3 (((𝐹 /f 𝐺):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((𝐹 /f 𝐺) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
7775, 59, 76syl2anc 691 . 2 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → ((𝐹 /f 𝐺) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
7858, 63, 773bitr4d 299 1 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 /f 𝐺) ∈ ≤𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wnel 2781  wral 2896  wrex 2897  Vcvv 3173  wss 3540   class class class wbr 4583  dom cdm 5038  ran crn 5039  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549   supp csupp 7182  cr 9814  0cc0 9815   · cmul 9820   < clt 9953  cle 9954   / cdiv 10563  +crp 11708  ≤𝑂(1)clo1 14066   /f cfdiv 42129  Οcbigo 42139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-supp 7183  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-rp 11709  df-ico 12052  df-lo1 14070  df-fdiv 42130  df-bigo 42140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator