Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrtrcl5 Structured version   Visualization version   GIF version

Theorem dfrtrcl5 36955
 Description: Definition of reflexive-transitive closure as a standard closure. (Contributed by RP, 1-Nov-2020.)
Assertion
Ref Expression
dfrtrcl5 t* = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))})
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfrtrcl5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-rtrcl 13575 . 2 t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
2 ancom 465 . . . . . . 7 ((( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦) ↔ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))
32anbi2i 726 . . . . . 6 ((𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦)) ↔ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)))
43abbii 2726 . . . . 5 {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))} = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}
54inteqi 4414 . . . 4 {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))} = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}
65mpteq2i 4669 . . 3 (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))}) = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))})
7 vex 3176 . . . . . 6 𝑥 ∈ V
87rtrclexi 36947 . . . . 5 {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V
98a1i 11 . . . 4 (𝑥 ∈ V → {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V)
10 dmexg 6989 . . . . . . . . 9 (𝑥 ∈ V → dom 𝑥 ∈ V)
11 rnexg 6990 . . . . . . . . 9 (𝑥 ∈ V → ran 𝑥 ∈ V)
12 unexg 6857 . . . . . . . . 9 ((dom 𝑥 ∈ V ∧ ran 𝑥 ∈ V) → (dom 𝑥 ∪ ran 𝑥) ∈ V)
1310, 11, 12syl2anc 691 . . . . . . . 8 (𝑥 ∈ V → (dom 𝑥 ∪ ran 𝑥) ∈ V)
14 resiexg 6994 . . . . . . . 8 ((dom 𝑥 ∪ ran 𝑥) ∈ V → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∈ V)
157, 13, 14mp2b 10 . . . . . . 7 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∈ V
167, 15unex 6854 . . . . . 6 (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V
1716trclexi 36946 . . . . 5 {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∈ V
1817a1i 11 . . . 4 (𝑥 ∈ V → {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∈ V)
19 simpr 476 . . . . . 6 (((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) → (𝑧𝑧) ⊆ 𝑧)
2019cotrintab 36940 . . . . 5 ( {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∘ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
2120a1i 11 . . . 4 (𝑥 ∈ V → ( {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∘ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
227dmex 6991 . . . . . . . . . . . . 13 dom 𝑥 ∈ V
237rnex 6992 . . . . . . . . . . . . 13 ran 𝑥 ∈ V
2412resiexd 6385 . . . . . . . . . . . . 13 ((dom 𝑥 ∈ V ∧ ran 𝑥 ∈ V) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∈ V)
2522, 23, 24mp2an 704 . . . . . . . . . . . 12 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∈ V
267, 25unex 6854 . . . . . . . . . . 11 (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V
27 dmtrcl 36953 . . . . . . . . . . 11 ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V → dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = dom (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))))
2826, 27ax-mp 5 . . . . . . . . . 10 dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = dom (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
29 dmun 5253 . . . . . . . . . . 11 dom (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ dom ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
30 dmresi 5376 . . . . . . . . . . . 12 dom ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
3130uneq2i 3726 . . . . . . . . . . 11 (dom 𝑥 ∪ dom ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥))
32 ssun1 3738 . . . . . . . . . . . 12 dom 𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥)
33 ssequn1 3745 . . . . . . . . . . . 12 (dom 𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥) ↔ (dom 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥))
3432, 33mpbi 219 . . . . . . . . . . 11 (dom 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
3529, 31, 343eqtri 2636 . . . . . . . . . 10 dom (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ ran 𝑥)
3628, 35eqtri 2632 . . . . . . . . 9 dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = (dom 𝑥 ∪ ran 𝑥)
37 rntrcl 36954 . . . . . . . . . . 11 ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V → ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = ran (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))))
3826, 37ax-mp 5 . . . . . . . . . 10 ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = ran (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
39 rnun 5460 . . . . . . . . . . 11 ran (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (ran 𝑥 ∪ ran ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
40 rnresi 5398 . . . . . . . . . . . 12 ran ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
4140uneq2i 3726 . . . . . . . . . . 11 (ran 𝑥 ∪ ran ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (ran 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥))
42 ssun2 3739 . . . . . . . . . . . 12 ran 𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥)
43 ssequn1 3745 . . . . . . . . . . . 12 (ran 𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥) ↔ (ran 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥))
4442, 43mpbi 219 . . . . . . . . . . 11 (ran 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
4539, 41, 443eqtri 2636 . . . . . . . . . 10 ran (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ ran 𝑥)
4638, 45eqtri 2632 . . . . . . . . 9 ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = (dom 𝑥 ∪ ran 𝑥)
4736, 46uneq12i 3727 . . . . . . . 8 (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = ((dom 𝑥 ∪ ran 𝑥) ∪ (dom 𝑥 ∪ ran 𝑥))
48 unidm 3718 . . . . . . . 8 ((dom 𝑥 ∪ ran 𝑥) ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
4947, 48eqtri 2632 . . . . . . 7 (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (dom 𝑥 ∪ ran 𝑥)
5049reseq2i 5314 . . . . . 6 ( I ↾ (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})) = ( I ↾ (dom 𝑥 ∪ ran 𝑥))
51 ssun2 3739 . . . . . . 7 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
52 ssmin 4431 . . . . . . 7 (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
5351, 52sstri 3577 . . . . . 6 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
5450, 53eqsstri 3598 . . . . 5 ( I ↾ (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
5554a1i 11 . . . 4 (𝑥 ∈ V → ( I ↾ (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
56 simprl 790 . . . . . 6 ((𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → (𝑦𝑦) ⊆ 𝑦)
5756cotrintab 36940 . . . . 5 ( {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) ⊆ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}
5857a1i 11 . . . 4 (𝑥 ∈ V → ( {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) ⊆ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))})
59 id 22 . . . . . 6 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → 𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
6059, 59coeq12d 5208 . . . . 5 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → (𝑦𝑦) = ( {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∘ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
6160, 59sseq12d 3597 . . . 4 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ((𝑦𝑦) ⊆ 𝑦 ↔ ( {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∘ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
62 dmeq 5246 . . . . . . 7 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → dom 𝑦 = dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
63 rneq 5272 . . . . . . 7 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ran 𝑦 = ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
6462, 63uneq12d 3730 . . . . . 6 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → (dom 𝑦 ∪ ran 𝑦) = (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
6564reseq2d 5317 . . . . 5 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) = ( I ↾ (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})))
6665, 59sseq12d 3597 . . . 4 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ ( I ↾ (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
67 id 22 . . . . . 6 (𝑧 = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → 𝑧 = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))})
6867, 67coeq12d 5208 . . . . 5 (𝑧 = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → (𝑧𝑧) = ( {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}))
6968, 67sseq12d 3597 . . . 4 (𝑧 = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → ((𝑧𝑧) ⊆ 𝑧 ↔ ( {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) ⊆ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}))
709, 18, 21, 55, 58, 61, 66, 69mptrcllem 36939 . . 3 (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) = (𝑥 ∈ V ↦ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
71 df-3an 1033 . . . . . . 7 ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧) ∧ (𝑧𝑧) ⊆ 𝑧))
72 ancom 465 . . . . . . . . 9 ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧) ↔ (𝑥𝑧 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧))
73 unss 3749 . . . . . . . . 9 ((𝑥𝑧 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧) ↔ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧)
7472, 73bitri 263 . . . . . . . 8 ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧) ↔ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧)
7574anbi1i 727 . . . . . . 7 (((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧) ∧ (𝑧𝑧) ⊆ 𝑧) ↔ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧))
7671, 75bitr2i 264 . . . . . 6 (((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧))
7776abbii 2726 . . . . 5 {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
7877inteqi 4414 . . . 4 {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
7978mpteq2i 4669 . . 3 (𝑥 ∈ V ↦ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
806, 70, 793eqtri 2636 . 2 (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))}) = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
811, 80eqtr4i 2635 1 t* = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))})
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {cab 2596  Vcvv 3173   ∪ cun 3538   ⊆ wss 3540  ∩ cint 4410   ↦ cmpt 4643   I cid 4948  dom cdm 5038  ran crn 5039   ↾ cres 5040   ∘ ccom 5042  t*crtcl 13573 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-rtrcl 13575 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator