Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotrintab Structured version   Visualization version   GIF version

Theorem cotrintab 36940
 Description: The intersection of a class is a transitive relation if membership in the class implies the member is a transitive relation. (Contributed by RP, 28-Oct-2020.)
Hypothesis
Ref Expression
cotrintab.min (𝜑 → (𝑥𝑥) ⊆ 𝑥)
Assertion
Ref Expression
cotrintab ( {𝑥𝜑} ∘ {𝑥𝜑}) ⊆ {𝑥𝜑}

Proof of Theorem cotrintab
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cotr 5427 . 2 (( {𝑥𝜑} ∘ {𝑥𝜑}) ⊆ {𝑥𝜑} ↔ ∀𝑢𝑤𝑣((𝑢 {𝑥𝜑}𝑤𝑤 {𝑥𝜑}𝑣) → 𝑢 {𝑥𝜑}𝑣))
2 pm3.43 902 . . . . . 6 (((𝜑𝑢𝑥𝑤) ∧ (𝜑𝑤𝑥𝑣)) → (𝜑 → (𝑢𝑥𝑤𝑤𝑥𝑣)))
3 cotrintab.min . . . . . . 7 (𝜑 → (𝑥𝑥) ⊆ 𝑥)
4 cotr 5427 . . . . . . . 8 ((𝑥𝑥) ⊆ 𝑥 ↔ ∀𝑢𝑤𝑣((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣))
54biimpi 205 . . . . . . 7 ((𝑥𝑥) ⊆ 𝑥 → ∀𝑢𝑤𝑣((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣))
6 2sp 2044 . . . . . . . 8 (∀𝑤𝑣((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣) → ((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣))
76sps 2043 . . . . . . 7 (∀𝑢𝑤𝑣((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣) → ((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣))
83, 5, 73syl 18 . . . . . 6 (𝜑 → ((𝑢𝑥𝑤𝑤𝑥𝑣) → 𝑢𝑥𝑣))
92, 8sylcom 30 . . . . 5 (((𝜑𝑢𝑥𝑤) ∧ (𝜑𝑤𝑥𝑣)) → (𝜑𝑢𝑥𝑣))
109alanimi 1734 . . . 4 ((∀𝑥(𝜑𝑢𝑥𝑤) ∧ ∀𝑥(𝜑𝑤𝑥𝑣)) → ∀𝑥(𝜑𝑢𝑥𝑣))
11 opex 4859 . . . . . . 7 𝑢, 𝑤⟩ ∈ V
1211elintab 4422 . . . . . 6 (⟨𝑢, 𝑤⟩ ∈ {𝑥𝜑} ↔ ∀𝑥(𝜑 → ⟨𝑢, 𝑤⟩ ∈ 𝑥))
13 df-br 4584 . . . . . 6 (𝑢 {𝑥𝜑}𝑤 ↔ ⟨𝑢, 𝑤⟩ ∈ {𝑥𝜑})
14 df-br 4584 . . . . . . . 8 (𝑢𝑥𝑤 ↔ ⟨𝑢, 𝑤⟩ ∈ 𝑥)
1514imbi2i 325 . . . . . . 7 ((𝜑𝑢𝑥𝑤) ↔ (𝜑 → ⟨𝑢, 𝑤⟩ ∈ 𝑥))
1615albii 1737 . . . . . 6 (∀𝑥(𝜑𝑢𝑥𝑤) ↔ ∀𝑥(𝜑 → ⟨𝑢, 𝑤⟩ ∈ 𝑥))
1712, 13, 163bitr4i 291 . . . . 5 (𝑢 {𝑥𝜑}𝑤 ↔ ∀𝑥(𝜑𝑢𝑥𝑤))
18 opex 4859 . . . . . . 7 𝑤, 𝑣⟩ ∈ V
1918elintab 4422 . . . . . 6 (⟨𝑤, 𝑣⟩ ∈ {𝑥𝜑} ↔ ∀𝑥(𝜑 → ⟨𝑤, 𝑣⟩ ∈ 𝑥))
20 df-br 4584 . . . . . 6 (𝑤 {𝑥𝜑}𝑣 ↔ ⟨𝑤, 𝑣⟩ ∈ {𝑥𝜑})
21 df-br 4584 . . . . . . . 8 (𝑤𝑥𝑣 ↔ ⟨𝑤, 𝑣⟩ ∈ 𝑥)
2221imbi2i 325 . . . . . . 7 ((𝜑𝑤𝑥𝑣) ↔ (𝜑 → ⟨𝑤, 𝑣⟩ ∈ 𝑥))
2322albii 1737 . . . . . 6 (∀𝑥(𝜑𝑤𝑥𝑣) ↔ ∀𝑥(𝜑 → ⟨𝑤, 𝑣⟩ ∈ 𝑥))
2419, 20, 233bitr4i 291 . . . . 5 (𝑤 {𝑥𝜑}𝑣 ↔ ∀𝑥(𝜑𝑤𝑥𝑣))
2517, 24anbi12i 729 . . . 4 ((𝑢 {𝑥𝜑}𝑤𝑤 {𝑥𝜑}𝑣) ↔ (∀𝑥(𝜑𝑢𝑥𝑤) ∧ ∀𝑥(𝜑𝑤𝑥𝑣)))
26 opex 4859 . . . . . 6 𝑢, 𝑣⟩ ∈ V
2726elintab 4422 . . . . 5 (⟨𝑢, 𝑣⟩ ∈ {𝑥𝜑} ↔ ∀𝑥(𝜑 → ⟨𝑢, 𝑣⟩ ∈ 𝑥))
28 df-br 4584 . . . . 5 (𝑢 {𝑥𝜑}𝑣 ↔ ⟨𝑢, 𝑣⟩ ∈ {𝑥𝜑})
29 df-br 4584 . . . . . . 7 (𝑢𝑥𝑣 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝑥)
3029imbi2i 325 . . . . . 6 ((𝜑𝑢𝑥𝑣) ↔ (𝜑 → ⟨𝑢, 𝑣⟩ ∈ 𝑥))
3130albii 1737 . . . . 5 (∀𝑥(𝜑𝑢𝑥𝑣) ↔ ∀𝑥(𝜑 → ⟨𝑢, 𝑣⟩ ∈ 𝑥))
3227, 28, 313bitr4i 291 . . . 4 (𝑢 {𝑥𝜑}𝑣 ↔ ∀𝑥(𝜑𝑢𝑥𝑣))
3310, 25, 323imtr4i 280 . . 3 ((𝑢 {𝑥𝜑}𝑤𝑤 {𝑥𝜑}𝑣) → 𝑢 {𝑥𝜑}𝑣)
3433gen2 1714 . 2 𝑤𝑣((𝑢 {𝑥𝜑}𝑤𝑤 {𝑥𝜑}𝑣) → 𝑢 {𝑥𝜑}𝑣)
351, 34mpgbir 1717 1 ( {𝑥𝜑} ∘ {𝑥𝜑}) ⊆ {𝑥𝜑}
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∀wal 1473   ∈ wcel 1977  {cab 2596   ⊆ wss 3540  ⟨cop 4131  ∩ cint 4410   class class class wbr 4583   ∘ ccom 5042 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-int 4411  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-co 5047 This theorem is referenced by:  dfrtrcl5  36955
 Copyright terms: Public domain W3C validator