MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  concompcon Structured version   Visualization version   GIF version

Theorem concompcon 21045
Description: The connected component containing 𝐴 is connected. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
concomp.2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)}
Assertion
Ref Expression
concompcon ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝑆) ∈ Con)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem concompcon
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 concomp.2 . . . 4 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)}
2 uniiun 4509 . . . 4 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)} = 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)}𝑦
31, 2eqtri 2632 . . 3 𝑆 = 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)}𝑦
43oveq2i 6560 . 2 (𝐽t 𝑆) = (𝐽t 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)}𝑦)
5 simpl 472 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
6 simpr 476 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)}) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)})
7 eleq2 2677 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
8 oveq2 6557 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐽t 𝑥) = (𝐽t 𝑦))
98eleq1d 2672 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐽t 𝑥) ∈ Con ↔ (𝐽t 𝑦) ∈ Con))
107, 9anbi12d 743 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con) ↔ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Con)))
1110elrab 3331 . . . . . 6 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Con)))
126, 11sylib 207 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)}) → (𝑦 ∈ 𝒫 𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Con)))
1312simpld 474 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)}) → 𝑦 ∈ 𝒫 𝑋)
1413elpwid 4118 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)}) → 𝑦𝑋)
1512simprd 478 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)}) → (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Con))
1615simpld 474 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)}) → 𝐴𝑦)
1715simprd 478 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)}) → (𝐽t 𝑦) ∈ Con)
185, 14, 16, 17iuncon 21041 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Con)}𝑦) ∈ Con)
194, 18syl5eqel 2692 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝑆) ∈ Con)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900  𝒫 cpw 4108   cuni 4372   ciun 4455  cfv 5804  (class class class)co 6549  t crest 15904  TopOnctopon 20518  Conccon 21024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-fi 8200  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-con 21025
This theorem is referenced by:  concompcld  21047  concompclo  21048  tgpconcompeqg  21725  tgpconcomp  21726
  Copyright terms: Public domain W3C validator