Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > concompcon | Structured version Visualization version GIF version |
Description: The connected component containing 𝐴 is connected. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
concomp.2 | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)} |
Ref | Expression |
---|---|
concompcon | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t 𝑆) ∈ Con) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | concomp.2 | . . . 4 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)} | |
2 | uniiun 4509 | . . . 4 ⊢ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)} = ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)}𝑦 | |
3 | 1, 2 | eqtri 2632 | . . 3 ⊢ 𝑆 = ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)}𝑦 |
4 | 3 | oveq2i 6560 | . 2 ⊢ (𝐽 ↾t 𝑆) = (𝐽 ↾t ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)}𝑦) |
5 | simpl 472 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
6 | simpr 476 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)}) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)}) | |
7 | eleq2 2677 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) | |
8 | oveq2 6557 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝐽 ↾t 𝑥) = (𝐽 ↾t 𝑦)) | |
9 | 8 | eleq1d 2672 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝐽 ↾t 𝑥) ∈ Con ↔ (𝐽 ↾t 𝑦) ∈ Con)) |
10 | 7, 9 | anbi12d 743 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con) ↔ (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Con))) |
11 | 10 | elrab 3331 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Con))) |
12 | 6, 11 | sylib 207 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)}) → (𝑦 ∈ 𝒫 𝑋 ∧ (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Con))) |
13 | 12 | simpld 474 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)}) → 𝑦 ∈ 𝒫 𝑋) |
14 | 13 | elpwid 4118 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)}) → 𝑦 ⊆ 𝑋) |
15 | 12 | simprd 478 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)}) → (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Con)) |
16 | 15 | simpld 474 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)}) → 𝐴 ∈ 𝑦) |
17 | 15 | simprd 478 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)}) → (𝐽 ↾t 𝑦) ∈ Con) |
18 | 5, 14, 16, 17 | iuncon 21041 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Con)}𝑦) ∈ Con) |
19 | 4, 18 | syl5eqel 2692 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t 𝑆) ∈ Con) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 𝒫 cpw 4108 ∪ cuni 4372 ∪ ciun 4455 ‘cfv 5804 (class class class)co 6549 ↾t crest 15904 TopOnctopon 20518 Conccon 21024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-oadd 7451 df-er 7629 df-en 7842 df-fin 7845 df-fi 8200 df-rest 15906 df-topgen 15927 df-top 20521 df-bases 20522 df-topon 20523 df-cld 20633 df-con 21025 |
This theorem is referenced by: concompcld 21047 concompclo 21048 tgpconcompeqg 21725 tgpconcomp 21726 |
Copyright terms: Public domain | W3C validator |