MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnegex2 Structured version   Visualization version   GIF version

Theorem cnegex2 10097
Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
cnegex2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnegex2
StepHypRef Expression
1 ax-icn 9874 . . . 4 i ∈ ℂ
21, 1mulcli 9924 . . 3 (i · i) ∈ ℂ
3 mulcl 9899 . . 3 (((i · i) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) ∈ ℂ)
42, 3mpan 702 . 2 (𝐴 ∈ ℂ → ((i · i) · 𝐴) ∈ ℂ)
5 mulid2 9917 . . . 4 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
65oveq2d 6565 . . 3 (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = (((i · i) · 𝐴) + 𝐴))
7 ax-i2m1 9883 . . . . 5 ((i · i) + 1) = 0
87oveq1i 6559 . . . 4 (((i · i) + 1) · 𝐴) = (0 · 𝐴)
9 ax-1cn 9873 . . . . 5 1 ∈ ℂ
10 adddir 9910 . . . . 5 (((i · i) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴)))
112, 9, 10mp3an12 1406 . . . 4 (𝐴 ∈ ℂ → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴)))
12 mul02 10093 . . . 4 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
138, 11, 123eqtr3a 2668 . . 3 (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = 0)
146, 13eqtr3d 2646 . 2 (𝐴 ∈ ℂ → (((i · i) · 𝐴) + 𝐴) = 0)
15 oveq1 6556 . . . 4 (𝑥 = ((i · i) · 𝐴) → (𝑥 + 𝐴) = (((i · i) · 𝐴) + 𝐴))
1615eqeq1d 2612 . . 3 (𝑥 = ((i · i) · 𝐴) → ((𝑥 + 𝐴) = 0 ↔ (((i · i) · 𝐴) + 𝐴) = 0))
1716rspcev 3282 . 2 ((((i · i) · 𝐴) ∈ ℂ ∧ (((i · i) · 𝐴) + 𝐴) = 0) → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
184, 14, 17syl2anc 691 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wrex 2897  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816  ici 9817   + caddc 9818   · cmul 9820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958
This theorem is referenced by:  addcan  10099
  Copyright terms: Public domain W3C validator