Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3b Structured version   Visualization version   GIF version

Theorem brpprod3b 31164
Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.)
Hypotheses
Ref Expression
brpprod3.1 𝑋 ∈ V
brpprod3.2 𝑌 ∈ V
brpprod3.3 𝑍 ∈ V
Assertion
Ref Expression
brpprod3b (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
Distinct variable groups:   𝑤,𝑅,𝑧   𝑤,𝑆,𝑧   𝑤,𝑋,𝑧   𝑤,𝑌,𝑧   𝑤,𝑍,𝑧

Proof of Theorem brpprod3b
StepHypRef Expression
1 pprodcnveq 31160 . . 3 pprod(𝑅, 𝑆) = pprod(𝑅, 𝑆)
21breqi 4589 . 2 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ 𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩)
3 brpprod3.1 . . . . 5 𝑋 ∈ V
4 opex 4859 . . . . 5 𝑌, 𝑍⟩ ∈ V
53, 4brcnv 5227 . . . 4 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ⟨𝑌, 𝑍⟩pprod(𝑅, 𝑆)𝑋)
6 brpprod3.2 . . . . 5 𝑌 ∈ V
7 brpprod3.3 . . . . 5 𝑍 ∈ V
86, 7, 3brpprod3a 31163 . . . 4 (⟨𝑌, 𝑍⟩pprod(𝑅, 𝑆)𝑋 ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤))
95, 8bitri 263 . . 3 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤))
10 biid 250 . . . . 5 (𝑋 = ⟨𝑧, 𝑤⟩ ↔ 𝑋 = ⟨𝑧, 𝑤⟩)
11 vex 3176 . . . . . 6 𝑧 ∈ V
126, 11brcnv 5227 . . . . 5 (𝑌𝑅𝑧𝑧𝑅𝑌)
13 vex 3176 . . . . . 6 𝑤 ∈ V
147, 13brcnv 5227 . . . . 5 (𝑍𝑆𝑤𝑤𝑆𝑍)
1510, 12, 143anbi123i 1244 . . . 4 ((𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤) ↔ (𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
16152exbii 1765 . . 3 (∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤) ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
179, 16bitri 263 . 2 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
182, 17bitri 263 1 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
Colors of variables: wff setvar class
Syntax hints:  wb 195  w3a 1031   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  cop 4131   class class class wbr 4583  ccnv 5037  pprodcpprod 31107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-1st 7059  df-2nd 7060  df-txp 31130  df-pprod 31131
This theorem is referenced by:  brcart  31209
  Copyright terms: Public domain W3C validator