Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcart Structured version   Visualization version   GIF version

Theorem brcart 31209
Description: Binary relationship form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brcart.1 𝐴 ∈ V
brcart.2 𝐵 ∈ V
brcart.3 𝐶 ∈ V
Assertion
Ref Expression
brcart (⟨𝐴, 𝐵⟩Cart𝐶𝐶 = (𝐴 × 𝐵))

Proof of Theorem brcart
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4859 . 2 𝐴, 𝐵⟩ ∈ V
2 brcart.3 . 2 𝐶 ∈ V
3 df-cart 31141 . 2 Cart = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (pprod( E , E ) ⊗ V)))
4 brcart.1 . . . 4 𝐴 ∈ V
5 brcart.2 . . . 4 𝐵 ∈ V
64, 5opelvv 5088 . . 3 𝐴, 𝐵⟩ ∈ (V × V)
7 brxp 5071 . . 3 (⟨𝐴, 𝐵⟩((V × V) × V)𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ 𝐶 ∈ V))
86, 2, 7mpbir2an 957 . 2 𝐴, 𝐵⟩((V × V) × V)𝐶
9 3anass 1035 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 E 𝐴𝑧 E 𝐵)))
104epelc 4951 . . . . . . 7 (𝑦 E 𝐴𝑦𝐴)
115epelc 4951 . . . . . . 7 (𝑧 E 𝐵𝑧𝐵)
1210, 11anbi12i 729 . . . . . 6 ((𝑦 E 𝐴𝑧 E 𝐵) ↔ (𝑦𝐴𝑧𝐵))
1312anbi2i 726 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 E 𝐴𝑧 E 𝐵)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
149, 13bitri 263 . . . 4 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
15142exbii 1765 . . 3 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
16 vex 3176 . . . 4 𝑥 ∈ V
1716, 4, 5brpprod3b 31164 . . 3 (𝑥pprod( E , E )⟨𝐴, 𝐵⟩ ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵))
18 elxp 5055 . . 3 (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
1915, 17, 183bitr4ri 292 . 2 (𝑥 ∈ (𝐴 × 𝐵) ↔ 𝑥pprod( E , E )⟨𝐴, 𝐵⟩)
201, 2, 3, 8, 19brtxpsd3 31173 1 (⟨𝐴, 𝐵⟩Cart𝐶𝐶 = (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  cop 4131   class class class wbr 4583   E cep 4947   × cxp 5036  pprodcpprod 31107  Cartccart 31117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-symdif 3806  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-eprel 4949  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-1st 7059  df-2nd 7060  df-txp 31130  df-pprod 31131  df-cart 31141
This theorem is referenced by:  brimg  31214  brrestrict  31226
  Copyright terms: Public domain W3C validator