Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relsset | Structured version Visualization version GIF version |
Description: The subset class is a relationship. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
relsset | ⊢ Rel SSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sset 31132 | . . 3 ⊢ SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) | |
2 | difss 3699 | . . 3 ⊢ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V) | |
3 | 1, 2 | eqsstri 3598 | . 2 ⊢ SSet ⊆ (V × V) |
4 | df-rel 5045 | . 2 ⊢ (Rel SSet ↔ SSet ⊆ (V × V)) | |
5 | 3, 4 | mpbir 220 | 1 ⊢ Rel SSet |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3173 ∖ cdif 3537 ⊆ wss 3540 E cep 4947 × cxp 5036 ran crn 5039 Rel wrel 5043 ⊗ ctxp 31106 SSet csset 31108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-dif 3543 df-in 3547 df-ss 3554 df-rel 5045 df-sset 31132 |
This theorem is referenced by: brsset 31166 idsset 31167 |
Copyright terms: Public domain | W3C validator |