Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relsset Structured version   Visualization version   GIF version

Theorem relsset 31165
Description: The subset class is a relationship. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
relsset Rel SSet

Proof of Theorem relsset
StepHypRef Expression
1 df-sset 31132 . . 3 SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E )))
2 difss 3699 . . 3 ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V)
31, 2eqsstri 3598 . 2 SSet ⊆ (V × V)
4 df-rel 5045 . 2 (Rel SSet SSet ⊆ (V × V))
53, 4mpbir 220 1 Rel SSet
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3173  cdif 3537  wss 3540   E cep 4947   × cxp 5036  ran crn 5039  Rel wrel 5043  ctxp 31106   SSet csset 31108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-rel 5045  df-sset 31132
This theorem is referenced by:  brsset  31166  idsset  31167
  Copyright terms: Public domain W3C validator