Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3b Structured version   Visualization version   Unicode version

Theorem brpprod3b 30703
Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.)
Hypotheses
Ref Expression
brpprod3.1  |-  X  e. 
_V
brpprod3.2  |-  Y  e. 
_V
brpprod3.3  |-  Z  e. 
_V
Assertion
Ref Expression
brpprod3b  |-  ( Xpprod ( R ,  S
) <. Y ,  Z >.  <->  E. z E. w ( X  =  <. z ,  w >.  /\  z R Y  /\  w S Z ) )
Distinct variable groups:    w, R, z    w, S, z    w, X, z    w, Y, z   
w, Z, z

Proof of Theorem brpprod3b
StepHypRef Expression
1 pprodcnveq 30699 . . 3  |- pprod ( R ,  S )  =  `'pprod ( `' R ,  `' S )
21breqi 4422 . 2  |-  ( Xpprod ( R ,  S
) <. Y ,  Z >.  <-> 
X `'pprod ( `' R ,  `' S ) <. Y ,  Z >. )
3 brpprod3.1 . . . . 5  |-  X  e. 
_V
4 opex 4678 . . . . 5  |-  <. Y ,  Z >.  e.  _V
53, 4brcnv 5036 . . . 4  |-  ( X `'pprod ( `' R ,  `' S ) <. Y ,  Z >. 
<-> 
<. Y ,  Z >.pprod ( `' R ,  `' S
) X )
6 brpprod3.2 . . . . 5  |-  Y  e. 
_V
7 brpprod3.3 . . . . 5  |-  Z  e. 
_V
86, 7, 3brpprod3a 30702 . . . 4  |-  ( <. Y ,  Z >.pprod ( `' R ,  `' S
) X  <->  E. z E. w ( X  = 
<. z ,  w >.  /\  Y `' R z  /\  Z `' S w ) )
95, 8bitri 257 . . 3  |-  ( X `'pprod ( `' R ,  `' S ) <. Y ,  Z >. 
<->  E. z E. w
( X  =  <. z ,  w >.  /\  Y `' R z  /\  Z `' S w ) )
10 biid 244 . . . . 5  |-  ( X  =  <. z ,  w >.  <-> 
X  =  <. z ,  w >. )
11 vex 3060 . . . . . 6  |-  z  e. 
_V
126, 11brcnv 5036 . . . . 5  |-  ( Y `' R z  <->  z R Y )
13 vex 3060 . . . . . 6  |-  w  e. 
_V
147, 13brcnv 5036 . . . . 5  |-  ( Z `' S w  <->  w S Z )
1510, 12, 143anbi123i 1203 . . . 4  |-  ( ( X  =  <. z ,  w >.  /\  Y `' R z  /\  Z `' S w )  <->  ( X  =  <. z ,  w >.  /\  z R Y  /\  w S Z ) )
16152exbii 1730 . . 3  |-  ( E. z E. w ( X  =  <. z ,  w >.  /\  Y `' R z  /\  Z `' S w )  <->  E. z E. w ( X  = 
<. z ,  w >.  /\  z R Y  /\  w S Z ) )
179, 16bitri 257 . 2  |-  ( X `'pprod ( `' R ,  `' S ) <. Y ,  Z >. 
<->  E. z E. w
( X  =  <. z ,  w >.  /\  z R Y  /\  w S Z ) )
182, 17bitri 257 1  |-  ( Xpprod ( R ,  S
) <. Y ,  Z >.  <->  E. z E. w ( X  =  <. z ,  w >.  /\  z R Y  /\  w S Z ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    /\ w3a 991    = wceq 1455   E.wex 1674    e. wcel 1898   _Vcvv 3057   <.cop 3986   class class class wbr 4416   `'ccnv 4852  pprodcpprod 30646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fo 5607  df-fv 5609  df-1st 6820  df-2nd 6821  df-txp 30669  df-pprod 30670
This theorem is referenced by:  brcart  30748
  Copyright terms: Public domain W3C validator