Mathbox for Giovanni Mascellani < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6s6f Structured version   Visualization version   GIF version

Theorem ac6s6f 33151
 Description: Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 20-Aug-2018.)
Hypotheses
Ref Expression
ac6s6f.1 𝐴 ∈ V
ac6s6f.2 𝑦𝜓
ac6s6f.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
ac6s6f.4 𝑥𝐴
Assertion
Ref Expression
ac6s6f 𝑓𝑥𝐴 (∃𝑦𝜑𝜓)
Distinct variable groups:   𝜑,𝑓   𝑥,𝑦,𝑓   𝐴,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑓)   𝐴(𝑥,𝑦)

Proof of Theorem ac6s6f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ac6s6f.1 . . . . . 6 𝐴 ∈ V
21isseti 3182 . . . . 5 𝑧 𝑧 = 𝐴
3 ac6s6f.2 . . . . . 6 𝑦𝜓
4 vex 3176 . . . . . 6 𝑧 ∈ V
5 ac6s6f.3 . . . . . 6 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
63, 4, 5ac6s6 33150 . . . . 5 𝑓𝑥𝑧 (∃𝑦𝜑𝜓)
72, 6pm3.2i 470 . . . 4 (∃𝑧 𝑧 = 𝐴 ∧ ∃𝑓𝑥𝑧 (∃𝑦𝜑𝜓))
87exan 1775 . . 3 𝑧(𝑧 = 𝐴 ∧ ∃𝑓𝑥𝑧 (∃𝑦𝜑𝜓))
9 exdistr 1906 . . 3 (∃𝑧𝑓(𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓)) ↔ ∃𝑧(𝑧 = 𝐴 ∧ ∃𝑓𝑥𝑧 (∃𝑦𝜑𝜓)))
108, 9mpbir 220 . 2 𝑧𝑓(𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓))
11 nfcv 2751 . . . . 5 𝑥𝑧
12 ac6s6f.4 . . . . 5 𝑥𝐴
1311, 12raleqf 3111 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧 (∃𝑦𝜑𝜓) ↔ ∀𝑥𝐴 (∃𝑦𝜑𝜓)))
1413biimpa 500 . . 3 ((𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓)) → ∀𝑥𝐴 (∃𝑦𝜑𝜓))
15142eximi 1753 . 2 (∃𝑧𝑓(𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓)) → ∃𝑧𝑓𝑥𝐴 (∃𝑦𝜑𝜓))
16 ax5e 1829 . 2 (∃𝑧𝑓𝑥𝐴 (∃𝑦𝜑𝜓) → ∃𝑓𝑥𝐴 (∃𝑦𝜑𝜓))
1710, 15, 16mp2b 10 1 𝑓𝑥𝐴 (∃𝑦𝜑𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695  Ⅎwnf 1699   ∈ wcel 1977  Ⅎwnfc 2738  ∀wral 2896  Vcvv 3173  ‘cfv 5804 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421  ax-ac2 9168 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-en 7842  df-r1 8510  df-rank 8511  df-card 8648  df-ac 8822 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator