Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6s6 Structured version   Visualization version   GIF version

Theorem ac6s6 33150
Description: Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 19-Aug-2018.)
Hypotheses
Ref Expression
ac6s6.1 𝑦𝜓
ac6s6.2 𝐴 ∈ V
ac6s6.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6s6 𝑓𝑥𝐴 (∃𝑦𝜑𝜓)
Distinct variable groups:   𝜑,𝑓   𝑥,𝑦   𝑥,𝐴,𝑓   𝑦,𝑓   𝐴,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑓)   𝐴(𝑦)

Proof of Theorem ac6s6
StepHypRef Expression
1 hbe1 2008 . . . . . 6 (∃𝑦𝜑 → ∀𝑦𝑦𝜑)
2 iftrue 4042 . . . . . . 7 (∃𝑦𝜑 → if(∃𝑦𝜑, {𝑦𝜑}, V) = {𝑦𝜑})
32abeq2d 2721 . . . . . 6 (∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑))
41, 3exbidh 1781 . . . . 5 (∃𝑦𝜑 → (∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ∃𝑦𝜑))
54ibir 256 . . . 4 (∃𝑦𝜑 → ∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V))
6 vex 3176 . . . . . 6 𝑦 ∈ V
76exiftru 1878 . . . . 5 𝑦 𝑦 ∈ V
81hbn 2131 . . . . . 6 (¬ ∃𝑦𝜑 → ∀𝑦 ¬ ∃𝑦𝜑)
9 iffalse 4045 . . . . . . 7 (¬ ∃𝑦𝜑 → if(∃𝑦𝜑, {𝑦𝜑}, V) = V)
109eleq2d 2673 . . . . . 6 (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V))
118, 10exbidh 1781 . . . . 5 (¬ ∃𝑦𝜑 → (∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ∃𝑦 𝑦 ∈ V))
127, 11mpbiri 247 . . . 4 (¬ ∃𝑦𝜑 → ∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V))
135, 12pm2.61i 175 . . 3 𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V)
1413rgenw 2908 . 2 𝑥𝐴𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V)
15 nfe1 2014 . . . 4 𝑦𝑦𝜑
16 ac6s6.1 . . . 4 𝑦𝜓
1715, 16nfim 1813 . . 3 𝑦(∃𝑦𝜑𝜓)
18 ac6s6.2 . . 3 𝐴 ∈ V
19 ac6s6.3 . . . . . 6 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
20 id 22 . . . . . . . . . . . . . . 15 𝜑 → ¬ 𝜑)
2120a1i 11 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ 𝜑))
22 ax-1 6 . . . . . . . . . . . . . . . . . . 19 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
23 tsim3 33109 . . . . . . . . . . . . . . . . . . . 20 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) ∨ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
2423a1d 25 . . . . . . . . . . . . . . . . . . 19 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) ∨ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))))
2522, 24cnf2dd 33063 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
26 tsim3 33109 . . . . . . . . . . . . . . . . . . 19 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
2726a1d 25 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (¬ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
2825, 27cnf2dd 33063 . . . . . . . . . . . . . . . . 17 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
29 tsim2 33108 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (∃𝑦𝜑 ∨ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
3029a1d 25 . . . . . . . . . . . . . . . . 17 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (∃𝑦𝜑 ∨ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
3128, 30cnf2dd 33063 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ∃𝑦𝜑))
32 tsim2 33108 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
3332a1d 25 . . . . . . . . . . . . . . . . 17 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
3425, 33cnf2dd 33063 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑))))
3531, 34mpdd 42 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)))
36 tsbi4 33113 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)))
3736a1d 25 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑))))
3835, 37cnfn2dd 33065 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ 𝜑)))
3921, 38cnf2dd 33063 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V)))
40 tsim3 33109 . . . . . . . . . . . . . . . . 17 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))) ∨ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
4140a1d 25 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))) ∨ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
4228, 41cnf2dd 33063 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
43 tsim3 33109 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
4443a1d 25 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
4542, 44cnf2dd 33063 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
46 tsbi2 33111 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ (∃𝑦𝜑𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
4746a1d 25 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ (∃𝑦𝜑𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
4845, 47cnf2dd 33063 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ (∃𝑦𝜑𝜓))))
4939, 48cnf1dd 33062 . . . . . . . . . . . 12 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (∃𝑦𝜑𝜓)))
50 tsim2 33108 . . . . . . . . . . . . . . . . . . 19 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (𝑦 = (𝑓𝑥) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
5150a1d 25 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (𝑦 = (𝑓𝑥) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
5242, 51cnf2dd 33063 . . . . . . . . . . . . . . . . 17 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑𝑦 = (𝑓𝑥)))
53 simplim 162 . . . . . . . . . . . . . . . . 17 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (𝑦 = (𝑓𝑥) → (𝜑𝜓)))
5452, 53syld 46 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (𝜑𝜓)))
55 tsbi3 33112 . . . . . . . . . . . . . . . . 17 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑𝜓)))
5655a1d 25 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑𝜓))))
5754, 56cnfn2dd 33065 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (𝜑 ∨ ¬ 𝜓)))
5821, 57cnf1dd 33062 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ 𝜓))
59 tsim1 33107 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((¬ ∃𝑦𝜑𝜓) ∨ ¬ (∃𝑦𝜑𝜓)))
6059a1d 25 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ((¬ ∃𝑦𝜑𝜓) ∨ ¬ (∃𝑦𝜑𝜓))))
6160or32dd 33066 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ((¬ ∃𝑦𝜑 ∨ ¬ (∃𝑦𝜑𝜓)) ∨ 𝜓)))
6258, 61cnf2dd 33063 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (¬ ∃𝑦𝜑 ∨ ¬ (∃𝑦𝜑𝜓))))
6331, 62cnfn1dd 33064 . . . . . . . . . . . 12 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ (∃𝑦𝜑𝜓)))
6449, 63contrd 33069 . . . . . . . . . . 11 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → 𝜑)
6564a1d 25 . . . . . . . . . 10 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → 𝜑))
66 ax-1 6 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
6723a1d 25 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) ∨ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))))
6866, 67cnf2dd 33063 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
6926a1d 25 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (¬ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
7068, 69cnf2dd 33063 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ¬ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
7129a1d 25 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (∃𝑦𝜑 ∨ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
7270, 71cnf2dd 33063 . . . . . . . . . . . 12 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ∃𝑦𝜑))
7332a1d 25 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
7468, 73cnf2dd 33063 . . . . . . . . . . . 12 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑))))
7572, 74mpdd 42 . . . . . . . . . . 11 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)))
76 tsbi3 33112 . . . . . . . . . . . 12 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)))
7776a1d 25 . . . . . . . . . . 11 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑))))
7875, 77cnfn2dd 33065 . . . . . . . . . 10 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ 𝜑)))
7965, 78cnfn2dd 33065 . . . . . . . . 9 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V)))
8040a1d 25 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))) ∨ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
8170, 80cnf2dd 33063 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
8250a1d 25 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (𝑦 = (𝑓𝑥) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
8381, 82cnf2dd 33063 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → 𝑦 = (𝑓𝑥)))
8483, 53syld 46 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (𝜑𝜓)))
85 tsbi4 33113 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((¬ 𝜑𝜓) ∨ ¬ (𝜑𝜓)))
8685a1d 25 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ((¬ 𝜑𝜓) ∨ ¬ (𝜑𝜓))))
8784, 86cnfn2dd 33065 . . . . . . . . . . . 12 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (¬ 𝜑𝜓)))
8865, 87cnfn1dd 33064 . . . . . . . . . . 11 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → 𝜓))
8988a1dd 48 . . . . . . . . . 10 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (∃𝑦𝜑𝜓)))
90 tsbi1 33110 . . . . . . . . . . . 12 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ (∃𝑦𝜑𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
9190a1d 25 . . . . . . . . . . 11 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ (∃𝑦𝜑𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
9291or32dd 33066 . . . . . . . . . 10 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))) ∨ ¬ (∃𝑦𝜑𝜓))))
9389, 92cnfn2dd 33065 . . . . . . . . 9 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
9479, 93cnfn1dd 33064 . . . . . . . 8 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
9543a1d 25 . . . . . . . . 9 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
9681, 95cnf2dd 33063 . . . . . . . 8 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
9794, 96contrd 33069 . . . . . . 7 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ⊥)
9897efald2 33047 . . . . . 6 ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
9919, 98ax-mp 5 . . . . 5 ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
1003, 99ax-mp 5 . . . 4 (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
1016a1i 11 . . . . . . 7 (¬ ∃𝑦𝜑𝑦 ∈ V)
102 id 22 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → ¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))))
103 tsim2 33108 . . . . . . . . . . . . . . 15 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
104103ord 391 . . . . . . . . . . . . . 14 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ¬ ∃𝑦𝜑 → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
105104a1dd 48 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ¬ ∃𝑦𝜑 → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))))
106105a1dd 48 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ¬ ∃𝑦𝜑 → ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))))
107102, 106mt3d 139 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → ¬ ∃𝑦𝜑)
108107a1d 25 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ⊥ → ¬ ∃𝑦𝜑))
109 simplim 162 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ∃𝑦𝜑𝑦 ∈ V))
110108, 109syld 46 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ⊥ → 𝑦 ∈ V))
111 tsim2 33108 . . . . . . . . . . . . . 14 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))))
112111ord 391 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))))
113112a1dd 48 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))))
114102, 113mt3d 139 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)))
115108, 114syld 46 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)))
116 id 22 . . . . . . . . . . . . . . . . . 18 (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V))
117116notornotel2 33068 . . . . . . . . . . . . . . . . 17 (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → 𝑦 ∈ V)
118117a1i 11 . . . . . . . . . . . . . . . 16 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → 𝑦 ∈ V))
119116notornotel1 33067 . . . . . . . . . . . . . . . . . 18 (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V))
120119a1i 11 . . . . . . . . . . . . . . . . 17 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)))
121 tsbi3 33112 . . . . . . . . . . . . . . . . . 18 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ 𝑦 ∈ V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)))
122121a1d 25 . . . . . . . . . . . . . . . . 17 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ 𝑦 ∈ V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V))))
123120, 122cnfn2dd 33065 . . . . . . . . . . . . . . . 16 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ 𝑦 ∈ V)))
124118, 123cnfn2dd 33065 . . . . . . . . . . . . . . 15 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V)))
125 a1tru 1491 . . . . . . . . . . . . . . . . 17 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → ⊤)
126125a1d 25 . . . . . . . . . . . . . . . 16 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ⊤))
127 tsbi1 33110 . . . . . . . . . . . . . . . . . 18 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ ⊤) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))
128127a1d 25 . . . . . . . . . . . . . . . . 17 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ ⊤) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
129128or32dd 33066 . . . . . . . . . . . . . . . 16 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) ∨ ¬ ⊤)))
130126, 129cnfn2dd 33065 . . . . . . . . . . . . . . 15 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
131124, 130cnfn1dd 33064 . . . . . . . . . . . . . 14 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))
132131a1dd 48 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
133132a1dd 48 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))))
134 ax-1 6 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))))
135 tsim3 33109 . . . . . . . . . . . . . 14 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))) ∨ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))))
136135a1d 25 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))) ∨ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))))))
137134, 136cnf2dd 33063 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))))
138133, 137contrd 33069 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V))
139138a1d 25 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ⊥ → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V)))
140115, 139cnfn1dd 33064 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ⊥ → ¬ 𝑦 ∈ V))
141110, 140contrd 33069 . . . . . . . 8 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → ⊥)
142141efald2 33047 . . . . . . 7 ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
143101, 142ax-mp 5 . . . . . 6 ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))
14410, 143ax-mp 5 . . . . 5 (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))
145 ax-1 6 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
146 tsim3 33109 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
147146a1d 25 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (¬ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
148145, 147cnf2dd 33063 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ¬ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
149 tsim2 33108 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
150149a1d 25 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (¬ ∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
151148, 150cnf2dd 33063 . . . . . . . 8 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ¬ ∃𝑦𝜑))
152 tsim2 33108 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
153152a1d 25 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
154145, 153cnf2dd 33063 . . . . . . . 8 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
155151, 154mpdd 42 . . . . . . 7 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))
156 id 22 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → ¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
157 id 22 . . . . . . . . . . . . . . 15 (¬ (∃𝑦𝜑𝜓) → ¬ (∃𝑦𝜑𝜓))
158157a1i 11 . . . . . . . . . . . . . 14 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (∃𝑦𝜑𝜓) → ¬ (∃𝑦𝜑𝜓)))
159 tsim2 33108 . . . . . . . . . . . . . . 15 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (∃𝑦𝜑 ∨ (∃𝑦𝜑𝜓)))
160159a1d 25 . . . . . . . . . . . . . 14 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (∃𝑦𝜑𝜓) → (∃𝑦𝜑 ∨ (∃𝑦𝜑𝜓))))
161158, 160cnf2dd 33063 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (∃𝑦𝜑𝜓) → ∃𝑦𝜑))
162149a1d 25 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (∃𝑦𝜑𝜓) → (¬ ∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
163161, 162cnfn1dd 33064 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (∃𝑦𝜑𝜓) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
164163a1dd 48 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (∃𝑦𝜑𝜓) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
165156, 164mt3d 139 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (∃𝑦𝜑𝜓))
166165a1d 25 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (∃𝑦𝜑𝜓)))
167 tsim3 33109 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))) ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
168167a1d 25 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))) ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
169148, 168cnf2dd 33063 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
170 tsim3 33109 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
171170a1d 25 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
172169, 171cnf2dd 33063 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
173 tsbi1 33110 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ (∃𝑦𝜑𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
174173a1d 25 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ (∃𝑦𝜑𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
175172, 174cnf2dd 33063 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ (∃𝑦𝜑𝜓))))
176166, 175cnfn2dd 33065 . . . . . . . 8 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V)))
177 a1tru 1491 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → ⊤)
178177a1d 25 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ⊤))
179 tsbi3 33112 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ ⊤) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))
180179a1d 25 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ ⊤) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
181180or32dd 33066 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) ∨ ¬ ⊤)))
182178, 181cnfn2dd 33065 . . . . . . . 8 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
183176, 182cnf1dd 33062 . . . . . . 7 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))
184155, 183contrd 33069 . . . . . 6 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → ⊥)
185184efald2 33047 . . . . 5 ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
186144, 185ax-mp 5 . . . 4 (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
187100, 186pm2.61i 175 . . 3 (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))
18817, 18, 187ac6s3f 33149 . 2 (∀𝑥𝐴𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) → ∃𝑓𝑥𝐴 (∃𝑦𝜑𝜓))
18914, 188ax-mp 5 1 𝑓𝑥𝐴 (∃𝑦𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382   = wceq 1475  wtru 1476  wfal 1480  wex 1695  wnf 1699  wcel 1977  {cab 2596  wral 2896  Vcvv 3173  ifcif 4036  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421  ax-ac2 9168
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-en 7842  df-r1 8510  df-rank 8511  df-card 8648  df-ac 8822
This theorem is referenced by:  ac6s6f  33151
  Copyright terms: Public domain W3C validator