Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemex6 Structured version   Visualization version   GIF version

Theorem 4atexlemex6 34378
 Description: Lemma for 4atexlem7 34379. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4thatleme.l = (le‘𝐾)
4thatleme.j = (join‘𝐾)
4thatleme.m = (meet‘𝐾)
4thatleme.a 𝐴 = (Atoms‘𝐾)
4thatleme.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
4atexlemex6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Distinct variable groups:   𝑧,𝐴   𝑧,   𝑧,   𝑧,   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,𝑆   𝑧,𝑊
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)

Proof of Theorem 4atexlemex6
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simp11l 1165 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ HL)
2 simp11 1084 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp12 1085 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp13l 1169 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑄𝐴)
5 simp32 1091 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃𝑄)
6 4thatleme.l . . . . 5 = (le‘𝐾)
7 4thatleme.j . . . . 5 = (join‘𝐾)
8 4thatleme.m . . . . 5 = (meet‘𝐾)
9 4thatleme.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 4thatleme.h . . . . 5 𝐻 = (LHyp‘𝐾)
116, 7, 8, 9, 10lhpat 34347 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
122, 3, 4, 5, 11syl112anc 1322 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
13 simp2r 1081 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝐴)
14 simp12l 1167 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃𝐴)
15 simp33 1092 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑆 (𝑃 𝑄))
166, 7, 9atnlej1 33683 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝑃)
171, 13, 14, 4, 15, 16syl131anc 1331 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝑃)
1817necomd 2837 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃𝑆)
196, 7, 8, 9, 10lhpat 34347 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴𝑃𝑆)) → ((𝑃 𝑆) 𝑊) ∈ 𝐴)
202, 3, 13, 18, 19syl112anc 1322 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑃 𝑆) 𝑊) ∈ 𝐴)
217, 9hlsupr2 33691 . . 3 ((𝐾 ∈ HL ∧ ((𝑃 𝑄) 𝑊) ∈ 𝐴 ∧ ((𝑃 𝑆) 𝑊) ∈ 𝐴) → ∃𝑡𝐴 (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡))
221, 12, 20, 21syl3anc 1318 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ∃𝑡𝐴 (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡))
23 simp111 1183 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 simp112 1184 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
25 simp113 1185 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
26 simp12r 1168 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → 𝑆𝐴)
27 simp2ll 1121 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝐴)
28273ad2ant1 1075 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → 𝑅𝐴)
29 simp2lr 1122 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑅 𝑊)
30293ad2ant1 1075 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → ¬ 𝑅 𝑊)
31 simp131 1189 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → (𝑃 𝑅) = (𝑄 𝑅))
3228, 30, 313jca 1235 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)))
33 3simpc 1053 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → (𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)))
34 simp132 1190 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → 𝑃𝑄)
35 simp133 1191 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → ¬ 𝑆 (𝑃 𝑄))
36 biid 250 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
37 eqid 2610 . . . . . 6 ((𝑃 𝑄) 𝑊) = ((𝑃 𝑄) 𝑊)
38 eqid 2610 . . . . . 6 ((𝑃 𝑆) 𝑊) = ((𝑃 𝑆) 𝑊)
39 eqid 2610 . . . . . 6 ((𝑄 𝑡) (𝑃 𝑆)) = ((𝑄 𝑡) (𝑃 𝑆))
40 eqid 2610 . . . . . 6 ((𝑅 𝑡) (𝑃 𝑆)) = ((𝑅 𝑡) (𝑃 𝑆))
4136, 6, 7, 8, 9, 10, 37, 38, 39, 404atexlemex4 34377 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ ((𝑄 𝑡) (𝑃 𝑆)) = 𝑆) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
4236, 6, 7, 8, 9, 10, 37, 38, 394atexlemex2 34375 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ ((𝑄 𝑡) (𝑃 𝑆)) ≠ 𝑆) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
4341, 42pm2.61dane 2869 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
4423, 24, 25, 26, 32, 33, 34, 35, 43syl332anc 1349 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝑡𝐴 ∧ (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
4544rexlimdv3a 3015 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (∃𝑡𝐴 (((𝑃 𝑄) 𝑊) 𝑡) = (((𝑃 𝑆) 𝑊) 𝑡) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
4622, 45mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  lecple 15775  joincjn 16767  meetcmee 16768  Atomscatm 33568  HLchlt 33655  LHypclh 34288 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lhyp 34292 This theorem is referenced by:  4atexlem7  34379
 Copyright terms: Public domain W3C validator