Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  1nqenq Structured version   Visualization version   GIF version

Theorem 1nqenq 9663
 Description: The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1nqenq (𝐴N → 1Q ~Q𝐴, 𝐴⟩)

Proof of Theorem 1nqenq
StepHypRef Expression
1 enqer 9622 . . 3 ~Q Er (N × N)
21a1i 11 . 2 (𝐴N → ~Q Er (N × N))
3 mulidpi 9587 . . . 4 (𝐴N → (𝐴 ·N 1𝑜) = 𝐴)
43, 3opeq12d 4348 . . 3 (𝐴N → ⟨(𝐴 ·N 1𝑜), (𝐴 ·N 1𝑜)⟩ = ⟨𝐴, 𝐴⟩)
5 1pi 9584 . . . . 5 1𝑜N
6 mulcanenq 9661 . . . . 5 ((𝐴N ∧ 1𝑜N ∧ 1𝑜N) → ⟨(𝐴 ·N 1𝑜), (𝐴 ·N 1𝑜)⟩ ~Q ⟨1𝑜, 1𝑜⟩)
75, 5, 6mp3an23 1408 . . . 4 (𝐴N → ⟨(𝐴 ·N 1𝑜), (𝐴 ·N 1𝑜)⟩ ~Q ⟨1𝑜, 1𝑜⟩)
8 df-1nq 9617 . . . 4 1Q = ⟨1𝑜, 1𝑜
97, 8syl6breqr 4625 . . 3 (𝐴N → ⟨(𝐴 ·N 1𝑜), (𝐴 ·N 1𝑜)⟩ ~Q 1Q)
104, 9eqbrtrrd 4607 . 2 (𝐴N → ⟨𝐴, 𝐴⟩ ~Q 1Q)
112, 10ersym 7641 1 (𝐴N → 1Q ~Q𝐴, 𝐴⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977  ⟨cop 4131   class class class wbr 4583   × cxp 5036  (class class class)co 6549  1𝑜c1o 7440   Er wer 7626  Ncnpi 9545   ·N cmi 9547   ~Q ceq 9552  1Qc1q 9554 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-ni 9573  df-mi 9575  df-enq 9612  df-1nq 9617 This theorem is referenced by:  recmulnq  9665
 Copyright terms: Public domain W3C validator