Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrgtned | Structured version Visualization version GIF version |
Description: 'Greater than' implies not equal. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xrgtned.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrgtned.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrgtned.3 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
xrgtned | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrgtned.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xrgtned.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | xrgtned.3 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
4 | xrltne 11870 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
5 | 1, 2, 3, 4 | syl3anc 1318 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1977 ≠ wne 2780 class class class wbr 4583 ℝ*cxr 9952 < clt 9953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-pre-lttri 9889 ax-pre-lttrn 9890 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 |
This theorem is referenced by: xrge0nemnfd 38489 xrltned 38514 infxr 38524 ioorrnopnxrlem 39202 gsumge0cl 39264 sge0pr 39287 sge0rpcpnf 39314 sge0isum 39320 |
Copyright terms: Public domain | W3C validator |