Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmettpos Structured version   Visualization version   GIF version

Theorem xmettpos 21964
 Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmettpos (𝐷 ∈ (∞Met‘𝑋) → tpos 𝐷 = 𝐷)

Proof of Theorem xmettpos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetsym 21962 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
213expb 1258 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
32ralrimivva 2954 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
4 xmetf 21944 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
5 ffn 5958 . . 3 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
6 tpossym 7271 . . 3 (𝐷 Fn (𝑋 × 𝑋) → (tpos 𝐷 = 𝐷 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑦𝐷𝑥)))
74, 5, 63syl 18 . 2 (𝐷 ∈ (∞Met‘𝑋) → (tpos 𝐷 = 𝐷 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = (𝑦𝐷𝑥)))
83, 7mpbird 246 1 (𝐷 ∈ (∞Met‘𝑋) → tpos 𝐷 = 𝐷)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475   ∈ wcel 1977  ∀wral 2896   × cxp 5036   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  tpos ctpos 7238  ℝ*cxr 9952  ∞Metcxmt 19552 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-tpos 7239  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-xadd 11823  df-xmet 19560 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator