MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wloglei Structured version   Visualization version   GIF version

Theorem wloglei 10439
Description: Form of wlogle 10440 where both sides of the equivalence are proven rather than showing that they are equivalent to each other. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
wlogle.1 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝜓𝜒))
wlogle.2 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝜓𝜃))
wlogle.3 (𝜑𝑆 ⊆ ℝ)
wloglei.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜃)
wloglei.5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜒)
Assertion
Ref Expression
wloglei ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝜒)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝜑   𝑤,𝑆,𝑥,𝑦,𝑧   𝜓,𝑥,𝑦   𝜒,𝑤,𝑧
Allowed substitution hints:   𝜓(𝑧,𝑤)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wloglei
StepHypRef Expression
1 wlogle.3 . . . 4 (𝜑𝑆 ⊆ ℝ)
21adantr 480 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 ⊆ ℝ)
3 simprr 792 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
42, 3sseldd 3569 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ ℝ)
5 simprl 790 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
62, 5sseldd 3569 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ ℝ)
7 vex 3176 . . 3 𝑥 ∈ V
8 vex 3176 . . 3 𝑦 ∈ V
9 eleq1 2676 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝑆𝑥𝑆))
10 eleq1 2676 . . . . . . 7 (𝑤 = 𝑦 → (𝑤𝑆𝑦𝑆))
119, 10bi2anan9 913 . . . . . 6 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝑧𝑆𝑤𝑆) ↔ (𝑥𝑆𝑦𝑆)))
1211anbi2d 736 . . . . 5 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ↔ (𝜑 ∧ (𝑥𝑆𝑦𝑆))))
13 breq12 4588 . . . . . 6 ((𝑤 = 𝑦𝑧 = 𝑥) → (𝑤𝑧𝑦𝑥))
1413ancoms 468 . . . . 5 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝑤𝑧𝑦𝑥))
1512, 14anbi12d 743 . . . 4 ((𝑧 = 𝑥𝑤 = 𝑦) → (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ 𝑤𝑧) ↔ ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑦𝑥)))
16 wlogle.1 . . . 4 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝜓𝜒))
1715, 16imbi12d 333 . . 3 ((𝑧 = 𝑥𝑤 = 𝑦) → ((((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ 𝑤𝑧) → 𝜓) ↔ (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑦𝑥) → 𝜒)))
18 vex 3176 . . . 4 𝑧 ∈ V
19 vex 3176 . . . 4 𝑤 ∈ V
20 ancom 465 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) ↔ (𝑦𝑆𝑥𝑆))
21 eleq1 2676 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦𝑆𝑧𝑆))
22 eleq1 2676 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥𝑆𝑤𝑆))
2321, 22bi2anan9 913 . . . . . . . 8 ((𝑦 = 𝑧𝑥 = 𝑤) → ((𝑦𝑆𝑥𝑆) ↔ (𝑧𝑆𝑤𝑆)))
2420, 23syl5bb 271 . . . . . . 7 ((𝑦 = 𝑧𝑥 = 𝑤) → ((𝑥𝑆𝑦𝑆) ↔ (𝑧𝑆𝑤𝑆)))
2524anbi2d 736 . . . . . 6 ((𝑦 = 𝑧𝑥 = 𝑤) → ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ↔ (𝜑 ∧ (𝑧𝑆𝑤𝑆))))
26 breq12 4588 . . . . . . 7 ((𝑥 = 𝑤𝑦 = 𝑧) → (𝑥𝑦𝑤𝑧))
2726ancoms 468 . . . . . 6 ((𝑦 = 𝑧𝑥 = 𝑤) → (𝑥𝑦𝑤𝑧))
2825, 27anbi12d 743 . . . . 5 ((𝑦 = 𝑧𝑥 = 𝑤) → (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑥𝑦) ↔ ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ 𝑤𝑧)))
29 equcom 1932 . . . . . . 7 (𝑦 = 𝑧𝑧 = 𝑦)
30 equcom 1932 . . . . . . 7 (𝑥 = 𝑤𝑤 = 𝑥)
31 wlogle.2 . . . . . . 7 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝜓𝜃))
3229, 30, 31syl2anb 495 . . . . . 6 ((𝑦 = 𝑧𝑥 = 𝑤) → (𝜓𝜃))
3332bicomd 212 . . . . 5 ((𝑦 = 𝑧𝑥 = 𝑤) → (𝜃𝜓))
3428, 33imbi12d 333 . . . 4 ((𝑦 = 𝑧𝑥 = 𝑤) → ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑥𝑦) → 𝜃) ↔ (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ 𝑤𝑧) → 𝜓)))
35 df-3an 1033 . . . . . 6 ((𝑥𝑆𝑦𝑆𝑥𝑦) ↔ ((𝑥𝑆𝑦𝑆) ∧ 𝑥𝑦))
36 wloglei.4 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜃)
3735, 36sylan2br 492 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ 𝑥𝑦)) → 𝜃)
3837anassrs 678 . . . 4 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑥𝑦) → 𝜃)
3918, 19, 34, 38vtocl2 3234 . . 3 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ 𝑤𝑧) → 𝜓)
407, 8, 17, 39vtocl2 3234 . 2 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑦𝑥) → 𝜒)
41 wloglei.5 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜒)
4235, 41sylan2br 492 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ 𝑥𝑦)) → 𝜒)
4342anassrs 678 . 2 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑥𝑦) → 𝜒)
444, 6, 40, 43lecasei 10022 1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wcel 1977  wss 3540   class class class wbr 4583  cr 9814  cle 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-pre-lttri 9889
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959
This theorem is referenced by:  wlogle  10440  rescon  30482
  Copyright terms: Public domain W3C validator