MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wloglei Structured version   Visualization version   Unicode version

Theorem wloglei 10167
Description: Form of wlogle 10168 where both sides of the equivalence are proven rather than showing that they are equivalent to each other. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
wlogle.1  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ps  <->  ch )
)
wlogle.2  |-  ( ( z  =  y  /\  w  =  x )  ->  ( ps  <->  th )
)
wlogle.3  |-  ( ph  ->  S  C_  RR )
wloglei.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  x  <_  y ) )  ->  th )
wloglei.5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  x  <_  y ) )  ->  ch )
Assertion
Ref Expression
wloglei  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ch )
Distinct variable groups:    x, w, y, z, ph    w, S, x, y, z    ps, x, y    ch, w, z
Allowed substitution hints:    ps( z, w)    ch( x, y)    th( x, y, z, w)

Proof of Theorem wloglei
StepHypRef Expression
1 wlogle.3 . . . 4  |-  ( ph  ->  S  C_  RR )
21adantr 472 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  S  C_  RR )
3 simprr 774 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
y  e.  S )
42, 3sseldd 3419 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
y  e.  RR )
5 simprl 772 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  S )
62, 5sseldd 3419 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  RR )
7 vex 3034 . . 3  |-  x  e. 
_V
8 vex 3034 . . 3  |-  y  e. 
_V
9 eleq1 2537 . . . . . . 7  |-  ( z  =  x  ->  (
z  e.  S  <->  x  e.  S ) )
10 eleq1 2537 . . . . . . 7  |-  ( w  =  y  ->  (
w  e.  S  <->  y  e.  S ) )
119, 10bi2anan9 890 . . . . . 6  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ( z  e.  S  /\  w  e.  S )  <->  ( x  e.  S  /\  y  e.  S ) ) )
1211anbi2d 718 . . . . 5  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ( ph  /\  ( z  e.  S  /\  w  e.  S
) )  <->  ( ph  /\  ( x  e.  S  /\  y  e.  S
) ) ) )
13 breq12 4400 . . . . . 6  |-  ( ( w  =  y  /\  z  =  x )  ->  ( w  <_  z  <->  y  <_  x ) )
1413ancoms 460 . . . . 5  |-  ( ( z  =  x  /\  w  =  y )  ->  ( w  <_  z  <->  y  <_  x ) )
1512, 14anbi12d 725 . . . 4  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ( ( ph  /\  ( z  e.  S  /\  w  e.  S
) )  /\  w  <_  z )  <->  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  /\  y  <_  x ) ) )
16 wlogle.1 . . . 4  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ps  <->  ch )
)
1715, 16imbi12d 327 . . 3  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ( ( (
ph  /\  ( z  e.  S  /\  w  e.  S ) )  /\  w  <_  z )  ->  ps )  <->  ( ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  /\  y  <_  x )  ->  ch ) ) )
18 vex 3034 . . . 4  |-  z  e. 
_V
19 vex 3034 . . . 4  |-  w  e. 
_V
20 ancom 457 . . . . . . . 8  |-  ( ( x  e.  S  /\  y  e.  S )  <->  ( y  e.  S  /\  x  e.  S )
)
21 eleq1 2537 . . . . . . . . 9  |-  ( y  =  z  ->  (
y  e.  S  <->  z  e.  S ) )
22 eleq1 2537 . . . . . . . . 9  |-  ( x  =  w  ->  (
x  e.  S  <->  w  e.  S ) )
2321, 22bi2anan9 890 . . . . . . . 8  |-  ( ( y  =  z  /\  x  =  w )  ->  ( ( y  e.  S  /\  x  e.  S )  <->  ( z  e.  S  /\  w  e.  S ) ) )
2420, 23syl5bb 265 . . . . . . 7  |-  ( ( y  =  z  /\  x  =  w )  ->  ( ( x  e.  S  /\  y  e.  S )  <->  ( z  e.  S  /\  w  e.  S ) ) )
2524anbi2d 718 . . . . . 6  |-  ( ( y  =  z  /\  x  =  w )  ->  ( ( ph  /\  ( x  e.  S  /\  y  e.  S
) )  <->  ( ph  /\  ( z  e.  S  /\  w  e.  S
) ) ) )
26 breq12 4400 . . . . . . 7  |-  ( ( x  =  w  /\  y  =  z )  ->  ( x  <_  y  <->  w  <_  z ) )
2726ancoms 460 . . . . . 6  |-  ( ( y  =  z  /\  x  =  w )  ->  ( x  <_  y  <->  w  <_  z ) )
2825, 27anbi12d 725 . . . . 5  |-  ( ( y  =  z  /\  x  =  w )  ->  ( ( ( ph  /\  ( x  e.  S  /\  y  e.  S
) )  /\  x  <_  y )  <->  ( ( ph  /\  ( z  e.  S  /\  w  e.  S ) )  /\  w  <_  z ) ) )
29 equcom 1870 . . . . . . 7  |-  ( y  =  z  <->  z  =  y )
30 equcom 1870 . . . . . . 7  |-  ( x  =  w  <->  w  =  x )
31 wlogle.2 . . . . . . 7  |-  ( ( z  =  y  /\  w  =  x )  ->  ( ps  <->  th )
)
3229, 30, 31syl2anb 487 . . . . . 6  |-  ( ( y  =  z  /\  x  =  w )  ->  ( ps  <->  th )
)
3332bicomd 206 . . . . 5  |-  ( ( y  =  z  /\  x  =  w )  ->  ( th  <->  ps )
)
3428, 33imbi12d 327 . . . 4  |-  ( ( y  =  z  /\  x  =  w )  ->  ( ( ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  /\  x  <_  y )  ->  th )  <->  ( ( (
ph  /\  ( z  e.  S  /\  w  e.  S ) )  /\  w  <_  z )  ->  ps ) ) )
35 df-3an 1009 . . . . . 6  |-  ( ( x  e.  S  /\  y  e.  S  /\  x  <_  y )  <->  ( (
x  e.  S  /\  y  e.  S )  /\  x  <_  y ) )
36 wloglei.4 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  x  <_  y ) )  ->  th )
3735, 36sylan2br 484 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  S  /\  y  e.  S )  /\  x  <_  y ) )  ->  th )
3837anassrs 660 . . . 4  |-  ( ( ( ph  /\  (
x  e.  S  /\  y  e.  S )
)  /\  x  <_  y )  ->  th )
3918, 19, 34, 38vtocl2 3088 . . 3  |-  ( ( ( ph  /\  (
z  e.  S  /\  w  e.  S )
)  /\  w  <_  z )  ->  ps )
407, 8, 17, 39vtocl2 3088 . 2  |-  ( ( ( ph  /\  (
x  e.  S  /\  y  e.  S )
)  /\  y  <_  x )  ->  ch )
41 wloglei.5 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  x  <_  y ) )  ->  ch )
4235, 41sylan2br 484 . . 3  |-  ( (
ph  /\  ( (
x  e.  S  /\  y  e.  S )  /\  x  <_  y ) )  ->  ch )
4342anassrs 660 . 2  |-  ( ( ( ph  /\  (
x  e.  S  /\  y  e.  S )
)  /\  x  <_  y )  ->  ch )
444, 6, 40, 43lecasei 9758 1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    e. wcel 1904    C_ wss 3390   class class class wbr 4395   RRcr 9556    <_ cle 9694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-resscn 9614  ax-pre-lttri 9631
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699
This theorem is referenced by:  wlogle  10168  rescon  30041
  Copyright terms: Public domain W3C validator