Step | Hyp | Ref
| Expression |
1 | | wdom2d.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
2 | | rabexg 4739 |
. . . . . 6
⊢ (𝐵 ∈ 𝑊 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∈ V) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∈ V) |
4 | | wdom2d.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
5 | | xpexg 6858 |
. . . . 5
⊢ (({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∈ V ∧ 𝐴 ∈ 𝑉) → ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} × 𝐴) ∈ V) |
6 | 3, 4, 5 | syl2anc 691 |
. . . 4
⊢ (𝜑 → ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} × 𝐴) ∈ V) |
7 | | csbeq1 3502 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → ⦋𝑧 / 𝑦⦌𝑋 = ⦋𝑤 / 𝑦⦌𝑋) |
8 | 7 | eleq1d 2672 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴 ↔ ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴)) |
9 | 8 | elrab 3331 |
. . . . . . . 8
⊢ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↔ (𝑤 ∈ 𝐵 ∧ ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴)) |
10 | 9 | simprbi 479 |
. . . . . . 7
⊢ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴) |
11 | 10 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}) → ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴) |
12 | | eqid 2610 |
. . . . . 6
⊢ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) = (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) |
13 | 11, 12 | fmptd 6292 |
. . . . 5
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}⟶𝐴) |
14 | | fssxp 5973 |
. . . . 5
⊢ ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}⟶𝐴 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ⊆ ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} × 𝐴)) |
15 | 13, 14 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ⊆ ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} × 𝐴)) |
16 | 6, 15 | ssexd 4733 |
. . 3
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ∈ V) |
17 | | wdom2d.o |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) |
18 | | eleq1 2676 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) |
19 | 18 | biimpcd 238 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝑥 = 𝑋 → 𝑋 ∈ 𝐴)) |
20 | 19 | ancrd 575 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (𝑥 = 𝑋 → (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋))) |
21 | 20 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝑋 → (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋))) |
22 | 21 | reximdv 2999 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝑥 = 𝑋 → ∃𝑦 ∈ 𝐵 (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋))) |
23 | 17, 22 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋)) |
24 | | nfv 1830 |
. . . . . . . 8
⊢
Ⅎ𝑣(𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) |
25 | | nfcsb1v 3515 |
. . . . . . . . . 10
⊢
Ⅎ𝑦⦋𝑣 / 𝑦⦌𝑋 |
26 | 25 | nfel1 2765 |
. . . . . . . . 9
⊢
Ⅎ𝑦⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 |
27 | 25 | nfeq2 2766 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 = ⦋𝑣 / 𝑦⦌𝑋 |
28 | 26, 27 | nfan 1816 |
. . . . . . . 8
⊢
Ⅎ𝑦(⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋) |
29 | | csbeq1a 3508 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → 𝑋 = ⦋𝑣 / 𝑦⦌𝑋) |
30 | 29 | eleq1d 2672 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → (𝑋 ∈ 𝐴 ↔ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴)) |
31 | 29 | eqeq2d 2620 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → (𝑥 = 𝑋 ↔ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
32 | 30, 31 | anbi12d 743 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → ((𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) ↔ (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋))) |
33 | 24, 28, 32 | cbvrex 3144 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐵 (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) ↔ ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
34 | 23, 33 | sylib 207 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
35 | | csbeq1 3502 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑣 → ⦋𝑧 / 𝑦⦌𝑋 = ⦋𝑣 / 𝑦⦌𝑋) |
36 | 35 | eleq1d 2672 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑣 → (⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴 ↔ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴)) |
37 | 36 | elrab 3331 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↔ (𝑣 ∈ 𝐵 ∧ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴)) |
38 | 37 | simprbi 479 |
. . . . . . . . . 10
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴) |
39 | | csbeq1 3502 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑣 → ⦋𝑤 / 𝑦⦌𝑋 = ⦋𝑣 / 𝑦⦌𝑋) |
40 | 39, 12 | fvmptg 6189 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∧ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴) → ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) = ⦋𝑣 / 𝑦⦌𝑋) |
41 | 38, 40 | mpdan 699 |
. . . . . . . . 9
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) = ⦋𝑣 / 𝑦⦌𝑋) |
42 | 41 | eqeq2d 2620 |
. . . . . . . 8
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → (𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) ↔ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
43 | 42 | rexbiia 3022 |
. . . . . . 7
⊢
(∃𝑣 ∈
{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) ↔ ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ⦋𝑣 / 𝑦⦌𝑋) |
44 | 36 | rexrab 3337 |
. . . . . . 7
⊢
(∃𝑣 ∈
{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ⦋𝑣 / 𝑦⦌𝑋 ↔ ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
45 | 43, 44 | bitri 263 |
. . . . . 6
⊢
(∃𝑣 ∈
{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) ↔ ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
46 | 34, 45 | sylibr 223 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣)) |
47 | 46 | ralrimiva 2949 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣)) |
48 | | dffo3 6282 |
. . . 4
⊢ ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}–onto→𝐴 ↔ ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣))) |
49 | 13, 47, 48 | sylanbrc 695 |
. . 3
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}–onto→𝐴) |
50 | | fowdom 8359 |
. . 3
⊢ (((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ∈ V ∧ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}–onto→𝐴) → 𝐴 ≼* {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}) |
51 | 16, 49, 50 | syl2anc 691 |
. 2
⊢ (𝜑 → 𝐴 ≼* {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}) |
52 | | ssrab2 3650 |
. . . 4
⊢ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ⊆ 𝐵 |
53 | | ssdomg 7887 |
. . . 4
⊢ (𝐵 ∈ 𝑊 → ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ⊆ 𝐵 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼ 𝐵)) |
54 | 52, 53 | mpi 20 |
. . 3
⊢ (𝐵 ∈ 𝑊 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼ 𝐵) |
55 | | domwdom 8362 |
. . 3
⊢ ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼ 𝐵 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼* 𝐵) |
56 | 1, 54, 55 | 3syl 18 |
. 2
⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼* 𝐵) |
57 | | wdomtr 8363 |
. 2
⊢ ((𝐴 ≼* {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∧ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼* 𝐵) → 𝐴 ≼* 𝐵) |
58 | 51, 56, 57 | syl2anc 691 |
1
⊢ (𝜑 → 𝐴 ≼* 𝐵) |