Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.26 Structured version   Visualization version   GIF version

Theorem tz6.26 5628
 Description: All nonempty (possibly proper) subclasses of 𝐴, which has a well-founded relation 𝑅, have 𝑅-minimal elements. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
tz6.26 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅

Proof of Theorem tz6.26
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wereu2 5035 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑦𝐵𝑥𝐵 ¬ 𝑥𝑅𝑦)
2 reurex 3137 . . 3 (∃!𝑦𝐵𝑥𝐵 ¬ 𝑥𝑅𝑦 → ∃𝑦𝐵𝑥𝐵 ¬ 𝑥𝑅𝑦)
31, 2syl 17 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵𝑥𝐵 ¬ 𝑥𝑅𝑦)
4 rabeq0 3911 . . . 4 ({𝑥𝐵𝑥𝑅𝑦} = ∅ ↔ ∀𝑥𝐵 ¬ 𝑥𝑅𝑦)
5 dfrab3 3861 . . . . . 6 {𝑥𝐵𝑥𝑅𝑦} = (𝐵 ∩ {𝑥𝑥𝑅𝑦})
6 vex 3176 . . . . . . 7 𝑦 ∈ V
76dfpred2 5606 . . . . . 6 Pred(𝑅, 𝐵, 𝑦) = (𝐵 ∩ {𝑥𝑥𝑅𝑦})
85, 7eqtr4i 2635 . . . . 5 {𝑥𝐵𝑥𝑅𝑦} = Pred(𝑅, 𝐵, 𝑦)
98eqeq1i 2615 . . . 4 ({𝑥𝐵𝑥𝑅𝑦} = ∅ ↔ Pred(𝑅, 𝐵, 𝑦) = ∅)
104, 9bitr3i 265 . . 3 (∀𝑥𝐵 ¬ 𝑥𝑅𝑦 ↔ Pred(𝑅, 𝐵, 𝑦) = ∅)
1110rexbii 3023 . 2 (∃𝑦𝐵𝑥𝐵 ¬ 𝑥𝑅𝑦 ↔ ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
123, 11sylib 207 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475  {cab 2596   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  ∃!wreu 2898  {crab 2900   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874   class class class wbr 4583   Se wse 4995   We wwe 4996  Predcpred 5596 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597 This theorem is referenced by:  tz6.26i  5629  wfi  5630  wzel  31015  wzelOLD  31016  wsuclem  31017  wsuclemOLD  31018
 Copyright terms: Public domain W3C validator