MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfbas2 Structured version   Visualization version   GIF version

Theorem trfbas2 21457
Description: Conditions for the trace of a filter base 𝐹 to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
trfbas2 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹t 𝐴)))

Proof of Theorem trfbas2
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6130 . . . 4 (𝐹 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
2 ssexg 4732 . . . . 5 ((𝐴𝑌𝑌 ∈ dom fBas) → 𝐴 ∈ V)
32ancoms 468 . . . 4 ((𝑌 ∈ dom fBas ∧ 𝐴𝑌) → 𝐴 ∈ V)
41, 3sylan 487 . . 3 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → 𝐴 ∈ V)
5 restsspw 15915 . . . 4 (𝐹t 𝐴) ⊆ 𝒫 𝐴
65a1i 11 . . 3 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (𝐹t 𝐴) ⊆ 𝒫 𝐴)
7 fbasne0 21444 . . . . . 6 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ≠ ∅)
87adantr 480 . . . . 5 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → 𝐹 ≠ ∅)
9 n0 3890 . . . . 5 (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥𝐹)
108, 9sylib 207 . . . 4 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ∃𝑥 𝑥𝐹)
11 elrestr 15912 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V ∧ 𝑥𝐹) → (𝑥𝐴) ∈ (𝐹t 𝐴))
12113expia 1259 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (𝑥𝐹 → (𝑥𝐴) ∈ (𝐹t 𝐴)))
134, 12syldan 486 . . . . . 6 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (𝑥𝐹 → (𝑥𝐴) ∈ (𝐹t 𝐴)))
14 ne0i 3880 . . . . . 6 ((𝑥𝐴) ∈ (𝐹t 𝐴) → (𝐹t 𝐴) ≠ ∅)
1513, 14syl6 34 . . . . 5 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (𝑥𝐹 → (𝐹t 𝐴) ≠ ∅))
1615exlimdv 1848 . . . 4 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (∃𝑥 𝑥𝐹 → (𝐹t 𝐴) ≠ ∅))
1710, 16mpd 15 . . 3 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (𝐹t 𝐴) ≠ ∅)
18 fbasssin 21450 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑧𝐹𝑤𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝑧𝑤))
19183expb 1258 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑌) ∧ (𝑧𝐹𝑤𝐹)) → ∃𝑥𝐹 𝑥 ⊆ (𝑧𝑤))
2019adantlr 747 . . . . . 6 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) → ∃𝑥𝐹 𝑥 ⊆ (𝑧𝑤))
21 simplll 794 . . . . . . . 8 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) ∧ (𝑥𝐹𝑥 ⊆ (𝑧𝑤))) → 𝐹 ∈ (fBas‘𝑌))
224ad2antrr 758 . . . . . . . 8 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) ∧ (𝑥𝐹𝑥 ⊆ (𝑧𝑤))) → 𝐴 ∈ V)
23 simprl 790 . . . . . . . 8 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) ∧ (𝑥𝐹𝑥 ⊆ (𝑧𝑤))) → 𝑥𝐹)
2421, 22, 23, 11syl3anc 1318 . . . . . . 7 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) ∧ (𝑥𝐹𝑥 ⊆ (𝑧𝑤))) → (𝑥𝐴) ∈ (𝐹t 𝐴))
25 ssrin 3800 . . . . . . . . 9 (𝑥 ⊆ (𝑧𝑤) → (𝑥𝐴) ⊆ ((𝑧𝑤) ∩ 𝐴))
2625ad2antll 761 . . . . . . . 8 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) ∧ (𝑥𝐹𝑥 ⊆ (𝑧𝑤))) → (𝑥𝐴) ⊆ ((𝑧𝑤) ∩ 𝐴))
27 vex 3176 . . . . . . . . . 10 𝑥 ∈ V
2827inex1 4727 . . . . . . . . 9 (𝑥𝐴) ∈ V
2928elpw 4114 . . . . . . . 8 ((𝑥𝐴) ∈ 𝒫 ((𝑧𝑤) ∩ 𝐴) ↔ (𝑥𝐴) ⊆ ((𝑧𝑤) ∩ 𝐴))
3026, 29sylibr 223 . . . . . . 7 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) ∧ (𝑥𝐹𝑥 ⊆ (𝑧𝑤))) → (𝑥𝐴) ∈ 𝒫 ((𝑧𝑤) ∩ 𝐴))
31 inelcm 3984 . . . . . . 7 (((𝑥𝐴) ∈ (𝐹t 𝐴) ∧ (𝑥𝐴) ∈ 𝒫 ((𝑧𝑤) ∩ 𝐴)) → ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅)
3224, 30, 31syl2anc 691 . . . . . 6 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) ∧ (𝑥𝐹𝑥 ⊆ (𝑧𝑤))) → ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅)
3320, 32rexlimddv 3017 . . . . 5 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐹𝑤𝐹)) → ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅)
3433ralrimivva 2954 . . . 4 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ∀𝑧𝐹𝑤𝐹 ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅)
35 vex 3176 . . . . . . 7 𝑧 ∈ V
3635inex1 4727 . . . . . 6 (𝑧𝐴) ∈ V
3736a1i 11 . . . . 5 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝐹) → (𝑧𝐴) ∈ V)
38 elrest 15911 . . . . . 6 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐹t 𝐴) ↔ ∃𝑧𝐹 𝑥 = (𝑧𝐴)))
394, 38syldan 486 . . . . 5 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (𝑥 ∈ (𝐹t 𝐴) ↔ ∃𝑧𝐹 𝑥 = (𝑧𝐴)))
40 vex 3176 . . . . . . . 8 𝑤 ∈ V
4140inex1 4727 . . . . . . 7 (𝑤𝐴) ∈ V
4241a1i 11 . . . . . 6 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 = (𝑧𝐴)) ∧ 𝑤𝐹) → (𝑤𝐴) ∈ V)
43 elrest 15911 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴 ∈ V) → (𝑦 ∈ (𝐹t 𝐴) ↔ ∃𝑤𝐹 𝑦 = (𝑤𝐴)))
444, 43syldan 486 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (𝑦 ∈ (𝐹t 𝐴) ↔ ∃𝑤𝐹 𝑦 = (𝑤𝐴)))
4544adantr 480 . . . . . 6 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 = (𝑧𝐴)) → (𝑦 ∈ (𝐹t 𝐴) ↔ ∃𝑤𝐹 𝑦 = (𝑤𝐴)))
46 ineq12 3771 . . . . . . . . . . 11 ((𝑥 = (𝑧𝐴) ∧ 𝑦 = (𝑤𝐴)) → (𝑥𝑦) = ((𝑧𝐴) ∩ (𝑤𝐴)))
47 inindir 3793 . . . . . . . . . . 11 ((𝑧𝑤) ∩ 𝐴) = ((𝑧𝐴) ∩ (𝑤𝐴))
4846, 47syl6eqr 2662 . . . . . . . . . 10 ((𝑥 = (𝑧𝐴) ∧ 𝑦 = (𝑤𝐴)) → (𝑥𝑦) = ((𝑧𝑤) ∩ 𝐴))
4948pweqd 4113 . . . . . . . . 9 ((𝑥 = (𝑧𝐴) ∧ 𝑦 = (𝑤𝐴)) → 𝒫 (𝑥𝑦) = 𝒫 ((𝑧𝑤) ∩ 𝐴))
5049ineq2d 3776 . . . . . . . 8 ((𝑥 = (𝑧𝐴) ∧ 𝑦 = (𝑤𝐴)) → ((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) = ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)))
5150neeq1d 2841 . . . . . . 7 ((𝑥 = (𝑧𝐴) ∧ 𝑦 = (𝑤𝐴)) → (((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅))
5251adantll 746 . . . . . 6 ((((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 = (𝑧𝐴)) ∧ 𝑦 = (𝑤𝐴)) → (((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅))
5342, 45, 52ralxfr2d 4808 . . . . 5 (((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 = (𝑧𝐴)) → (∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑤𝐹 ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅))
5437, 39, 53ralxfr2d 4808 . . . 4 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → (∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑧𝐹𝑤𝐹 ((𝐹t 𝐴) ∩ 𝒫 ((𝑧𝑤) ∩ 𝐴)) ≠ ∅))
5534, 54mpbird 246 . . 3 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
56 isfbas 21443 . . . . . 6 (𝐴 ∈ V → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ((𝐹t 𝐴) ⊆ 𝒫 𝐴 ∧ ((𝐹t 𝐴) ≠ ∅ ∧ ∅ ∉ (𝐹t 𝐴) ∧ ∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
5756baibd 946 . . . . 5 ((𝐴 ∈ V ∧ (𝐹t 𝐴) ⊆ 𝒫 𝐴) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ((𝐹t 𝐴) ≠ ∅ ∧ ∅ ∉ (𝐹t 𝐴) ∧ ∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
58 3anan32 1043 . . . . 5 (((𝐹t 𝐴) ≠ ∅ ∧ ∅ ∉ (𝐹t 𝐴) ∧ ∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ↔ (((𝐹t 𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ∧ ∅ ∉ (𝐹t 𝐴)))
5957, 58syl6bb 275 . . . 4 ((𝐴 ∈ V ∧ (𝐹t 𝐴) ⊆ 𝒫 𝐴) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ (((𝐹t 𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ∧ ∅ ∉ (𝐹t 𝐴))))
6059baibd 946 . . 3 (((𝐴 ∈ V ∧ (𝐹t 𝐴) ⊆ 𝒫 𝐴) ∧ ((𝐹t 𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝐹t 𝐴)∀𝑦 ∈ (𝐹t 𝐴)((𝐹t 𝐴) ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ∅ ∉ (𝐹t 𝐴)))
614, 6, 17, 55, 60syl22anc 1319 . 2 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ∅ ∉ (𝐹t 𝐴)))
62 df-nel 2783 . 2 (∅ ∉ (𝐹t 𝐴) ↔ ¬ ∅ ∈ (𝐹t 𝐴))
6361, 62syl6bb 275 1 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹t 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wnel 2781  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  dom cdm 5038  cfv 5804  (class class class)co 6549  t crest 15904  fBascfbas 19555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-rest 15906  df-fbas 19564
This theorem is referenced by:  trfbas  21458  uzfbas  21512  trcfilu  21908
  Copyright terms: Public domain W3C validator