Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  trcfilu Structured version   Visualization version   GIF version

Theorem trcfilu 21908
 Description: Condition for the trace of a Cauchy filter base to be a Cauchy filter base for the restricted uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.)
Assertion
Ref Expression
trcfilu ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))))

Proof of Theorem trcfilu
Dummy variables 𝑎 𝑏 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1054 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝑈 ∈ (UnifOn‘𝑋))
2 simp2l 1080 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝐹 ∈ (CauFilu𝑈))
3 iscfilu 21902 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
43biimpa 500 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
51, 2, 4syl2anc 691 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
65simpld 474 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝐹 ∈ (fBas‘𝑋))
7 simp3 1056 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝐴𝑋)
8 simp2r 1081 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ¬ ∅ ∈ (𝐹t 𝐴))
9 trfbas2 21457 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝑋) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹t 𝐴)))
109biimpar 501 . . 3 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝑋) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) → (𝐹t 𝐴) ∈ (fBas‘𝐴))
116, 7, 8, 10syl21anc 1317 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹t 𝐴) ∈ (fBas‘𝐴))
122ad5antr 766 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝐹 ∈ (CauFilu𝑈))
131adantr 480 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝑈 ∈ (UnifOn‘𝑋))
1413elfvexd 6132 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝑋 ∈ V)
157adantr 480 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝐴𝑋)
1614, 15ssexd 4733 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝐴 ∈ V)
1716ad4antr 764 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝐴 ∈ V)
18 simplr 788 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝑎𝐹)
19 elrestr 15912 . . . . . . 7 ((𝐹 ∈ (CauFilu𝑈) ∧ 𝐴 ∈ V ∧ 𝑎𝐹) → (𝑎𝐴) ∈ (𝐹t 𝐴))
2012, 17, 18, 19syl3anc 1318 . . . . . 6 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → (𝑎𝐴) ∈ (𝐹t 𝐴))
21 inxp 5176 . . . . . . 7 ((𝑎 × 𝑎) ∩ (𝐴 × 𝐴)) = ((𝑎𝐴) × (𝑎𝐴))
22 simpr 476 . . . . . . . . 9 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → (𝑎 × 𝑎) ⊆ 𝑣)
23 ssrin 3800 . . . . . . . . 9 ((𝑎 × 𝑎) ⊆ 𝑣 → ((𝑎 × 𝑎) ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))
2422, 23syl 17 . . . . . . . 8 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ((𝑎 × 𝑎) ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))
25 simpllr 795 . . . . . . . 8 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝑤 = (𝑣 ∩ (𝐴 × 𝐴)))
2624, 25sseqtr4d 3605 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ((𝑎 × 𝑎) ∩ (𝐴 × 𝐴)) ⊆ 𝑤)
2721, 26syl5eqssr 3613 . . . . . 6 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ((𝑎𝐴) × (𝑎𝐴)) ⊆ 𝑤)
28 id 22 . . . . . . . . 9 (𝑏 = (𝑎𝐴) → 𝑏 = (𝑎𝐴))
2928sqxpeqd 5065 . . . . . . . 8 (𝑏 = (𝑎𝐴) → (𝑏 × 𝑏) = ((𝑎𝐴) × (𝑎𝐴)))
3029sseq1d 3595 . . . . . . 7 (𝑏 = (𝑎𝐴) → ((𝑏 × 𝑏) ⊆ 𝑤 ↔ ((𝑎𝐴) × (𝑎𝐴)) ⊆ 𝑤))
3130rspcev 3282 . . . . . 6 (((𝑎𝐴) ∈ (𝐹t 𝐴) ∧ ((𝑎𝐴) × (𝑎𝐴)) ⊆ 𝑤) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
3220, 27, 31syl2anc 691 . . . . 5 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
335simprd 478 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3433r19.21bi 2916 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑣𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
35343ad2antr2 1220 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ (𝑤 ∈ (𝑈t (𝐴 × 𝐴)) ∧ 𝑣𝑈𝑤 = (𝑣 ∩ (𝐴 × 𝐴)))) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
36353anassrs 1282 . . . . 5 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3732, 36r19.29a 3060 . . . 4 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
38 xpexg 6858 . . . . . 6 ((𝐴 ∈ V ∧ 𝐴 ∈ V) → (𝐴 × 𝐴) ∈ V)
3916, 16, 38syl2anc 691 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → (𝐴 × 𝐴) ∈ V)
40 simpr 476 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝑤 ∈ (𝑈t (𝐴 × 𝐴)))
41 elrest 15911 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) → (𝑤 ∈ (𝑈t (𝐴 × 𝐴)) ↔ ∃𝑣𝑈 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))))
4241biimpa 500 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → ∃𝑣𝑈 𝑤 = (𝑣 ∩ (𝐴 × 𝐴)))
4313, 39, 40, 42syl21anc 1317 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → ∃𝑣𝑈 𝑤 = (𝑣 ∩ (𝐴 × 𝐴)))
4437, 43r19.29a 3060 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
4544ralrimiva 2949 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ∀𝑤 ∈ (𝑈t (𝐴 × 𝐴))∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
46 trust 21843 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
471, 7, 46syl2anc 691 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
48 iscfilu 21902 . . 3 ((𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) → ((𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))) ↔ ((𝐹t 𝐴) ∈ (fBas‘𝐴) ∧ ∀𝑤 ∈ (𝑈t (𝐴 × 𝐴))∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)))
4947, 48syl 17 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ((𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))) ↔ ((𝐹t 𝐴) ∈ (fBas‘𝐴) ∧ ∀𝑤 ∈ (𝑈t (𝐴 × 𝐴))∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)))
5011, 45, 49mpbir2and 959 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874   × cxp 5036  ‘cfv 5804  (class class class)co 6549   ↾t crest 15904  fBascfbas 19555  UnifOncust 21813  CauFiluccfilu 21900 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-rest 15906  df-fbas 19564  df-ust 21814  df-cfilu 21901 This theorem is referenced by:  ucnextcn  21918
 Copyright terms: Public domain W3C validator