MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfbas2 Structured version   Unicode version

Theorem trfbas2 19414
Description: Conditions for the trace of a filter base  F to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
trfbas2  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  (
( Ft  A )  e.  (
fBas `  A )  <->  -.  (/)  e.  ( Ft  A ) ) )

Proof of Theorem trfbas2
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 5714 . . . 4  |-  ( F  e.  ( fBas `  Y
)  ->  Y  e.  dom  fBas )
2 ssexg 4436 . . . . 5  |-  ( ( A  C_  Y  /\  Y  e.  dom  fBas )  ->  A  e.  _V )
32ancoms 453 . . . 4  |-  ( ( Y  e.  dom  fBas  /\  A  C_  Y )  ->  A  e.  _V )
41, 3sylan 471 . . 3  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  A  e.  _V )
5 restsspw 14368 . . . 4  |-  ( Ft  A )  C_  ~P A
65a1i 11 . . 3  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  ( Ft  A )  C_  ~P A )
7 fbasne0 19401 . . . . . 6  |-  ( F  e.  ( fBas `  Y
)  ->  F  =/=  (/) )
87adantr 465 . . . . 5  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  F  =/=  (/) )
9 n0 3644 . . . . 5  |-  ( F  =/=  (/)  <->  E. x  x  e.  F )
108, 9sylib 196 . . . 4  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  E. x  x  e.  F )
11 elrestr 14365 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  Y )  /\  A  e.  _V  /\  x  e.  F )  ->  (
x  i^i  A )  e.  ( Ft  A ) )
12113expia 1189 . . . . . . 7  |-  ( ( F  e.  ( fBas `  Y )  /\  A  e.  _V )  ->  (
x  e.  F  -> 
( x  i^i  A
)  e.  ( Ft  A ) ) )
134, 12syldan 470 . . . . . 6  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  (
x  e.  F  -> 
( x  i^i  A
)  e.  ( Ft  A ) ) )
14 ne0i 3641 . . . . . 6  |-  ( ( x  i^i  A )  e.  ( Ft  A )  ->  ( Ft  A )  =/=  (/) )
1513, 14syl6 33 . . . . 5  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  (
x  e.  F  -> 
( Ft  A )  =/=  (/) ) )
1615exlimdv 1690 . . . 4  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  ( E. x  x  e.  F  ->  ( Ft  A )  =/=  (/) ) )
1710, 16mpd 15 . . 3  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  ( Ft  A )  =/=  (/) )
18 fbasssin 19407 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  Y )  /\  z  e.  F  /\  w  e.  F )  ->  E. x  e.  F  x  C_  (
z  i^i  w )
)
19183expb 1188 . . . . . . 7  |-  ( ( F  e.  ( fBas `  Y )  /\  (
z  e.  F  /\  w  e.  F )
)  ->  E. x  e.  F  x  C_  (
z  i^i  w )
)
2019adantlr 714 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  Y )  /\  A  C_  Y )  /\  ( z  e.  F  /\  w  e.  F ) )  ->  E. x  e.  F  x  C_  ( z  i^i  w ) )
21 simplll 757 . . . . . . . 8  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  ( z  e.  F  /\  w  e.  F ) )  /\  ( x  e.  F  /\  x  C_  ( z  i^i  w ) ) )  ->  F  e.  ( fBas `  Y )
)
224ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  ( z  e.  F  /\  w  e.  F ) )  /\  ( x  e.  F  /\  x  C_  ( z  i^i  w ) ) )  ->  A  e.  _V )
23 simprl 755 . . . . . . . 8  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  ( z  e.  F  /\  w  e.  F ) )  /\  ( x  e.  F  /\  x  C_  ( z  i^i  w ) ) )  ->  x  e.  F )
2421, 22, 23, 11syl3anc 1218 . . . . . . 7  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  ( z  e.  F  /\  w  e.  F ) )  /\  ( x  e.  F  /\  x  C_  ( z  i^i  w ) ) )  ->  ( x  i^i  A )  e.  ( Ft  A ) )
25 ssrin 3573 . . . . . . . . 9  |-  ( x 
C_  ( z  i^i  w )  ->  (
x  i^i  A )  C_  ( ( z  i^i  w )  i^i  A
) )
2625ad2antll 728 . . . . . . . 8  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  ( z  e.  F  /\  w  e.  F ) )  /\  ( x  e.  F  /\  x  C_  ( z  i^i  w ) ) )  ->  ( x  i^i  A )  C_  (
( z  i^i  w
)  i^i  A )
)
27 vex 2973 . . . . . . . . . 10  |-  x  e. 
_V
2827inex1 4431 . . . . . . . . 9  |-  ( x  i^i  A )  e. 
_V
2928elpw 3864 . . . . . . . 8  |-  ( ( x  i^i  A )  e.  ~P ( ( z  i^i  w )  i^i  A )  <->  ( x  i^i  A )  C_  (
( z  i^i  w
)  i^i  A )
)
3026, 29sylibr 212 . . . . . . 7  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  ( z  e.  F  /\  w  e.  F ) )  /\  ( x  e.  F  /\  x  C_  ( z  i^i  w ) ) )  ->  ( x  i^i  A )  e.  ~P ( ( z  i^i  w )  i^i  A
) )
31 inelcm 3731 . . . . . . 7  |-  ( ( ( x  i^i  A
)  e.  ( Ft  A )  /\  ( x  i^i  A )  e. 
~P ( ( z  i^i  w )  i^i 
A ) )  -> 
( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A ) )  =/=  (/) )
3224, 30, 31syl2anc 661 . . . . . 6  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  ( z  e.  F  /\  w  e.  F ) )  /\  ( x  e.  F  /\  x  C_  ( z  i^i  w ) ) )  ->  ( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A
) )  =/=  (/) )
3320, 32rexlimddv 2843 . . . . 5  |-  ( ( ( F  e.  (
fBas `  Y )  /\  A  C_  Y )  /\  ( z  e.  F  /\  w  e.  F ) )  -> 
( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A ) )  =/=  (/) )
3433ralrimivva 2806 . . . 4  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  A. z  e.  F  A. w  e.  F  ( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A
) )  =/=  (/) )
35 vex 2973 . . . . . . 7  |-  z  e. 
_V
3635inex1 4431 . . . . . 6  |-  ( z  i^i  A )  e. 
_V
3736a1i 11 . . . . 5  |-  ( ( ( F  e.  (
fBas `  Y )  /\  A  C_  Y )  /\  z  e.  F
)  ->  ( z  i^i  A )  e.  _V )
38 elrest 14364 . . . . . 6  |-  ( ( F  e.  ( fBas `  Y )  /\  A  e.  _V )  ->  (
x  e.  ( Ft  A )  <->  E. z  e.  F  x  =  ( z  i^i  A ) ) )
394, 38syldan 470 . . . . 5  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  (
x  e.  ( Ft  A )  <->  E. z  e.  F  x  =  ( z  i^i  A ) ) )
40 vex 2973 . . . . . . . 8  |-  w  e. 
_V
4140inex1 4431 . . . . . . 7  |-  ( w  i^i  A )  e. 
_V
4241a1i 11 . . . . . 6  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  x  =  ( z  i^i  A
) )  /\  w  e.  F )  ->  (
w  i^i  A )  e.  _V )
43 elrest 14364 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  Y )  /\  A  e.  _V )  ->  (
y  e.  ( Ft  A )  <->  E. w  e.  F  y  =  ( w  i^i  A ) ) )
444, 43syldan 470 . . . . . . 7  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  (
y  e.  ( Ft  A )  <->  E. w  e.  F  y  =  ( w  i^i  A ) ) )
4544adantr 465 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  Y )  /\  A  C_  Y )  /\  x  =  ( z  i^i  A ) )  ->  ( y  e.  ( Ft  A )  <->  E. w  e.  F  y  =  ( w  i^i  A ) ) )
46 ineq12 3545 . . . . . . . . . . 11  |-  ( ( x  =  ( z  i^i  A )  /\  y  =  ( w  i^i  A ) )  -> 
( x  i^i  y
)  =  ( ( z  i^i  A )  i^i  ( w  i^i 
A ) ) )
47 inindir 3566 . . . . . . . . . . 11  |-  ( ( z  i^i  w )  i^i  A )  =  ( ( z  i^i 
A )  i^i  (
w  i^i  A )
)
4846, 47syl6eqr 2491 . . . . . . . . . 10  |-  ( ( x  =  ( z  i^i  A )  /\  y  =  ( w  i^i  A ) )  -> 
( x  i^i  y
)  =  ( ( z  i^i  w )  i^i  A ) )
4948pweqd 3863 . . . . . . . . 9  |-  ( ( x  =  ( z  i^i  A )  /\  y  =  ( w  i^i  A ) )  ->  ~P ( x  i^i  y
)  =  ~P (
( z  i^i  w
)  i^i  A )
)
5049ineq2d 3550 . . . . . . . 8  |-  ( ( x  =  ( z  i^i  A )  /\  y  =  ( w  i^i  A ) )  -> 
( ( Ft  A )  i^i  ~P ( x  i^i  y ) )  =  ( ( Ft  A )  i^i  ~P (
( z  i^i  w
)  i^i  A )
) )
5150neeq1d 2619 . . . . . . 7  |-  ( ( x  =  ( z  i^i  A )  /\  y  =  ( w  i^i  A ) )  -> 
( ( ( Ft  A )  i^i  ~P (
x  i^i  y )
)  =/=  (/)  <->  ( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A
) )  =/=  (/) ) )
5251adantll 713 . . . . . 6  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  A  C_  Y
)  /\  x  =  ( z  i^i  A
) )  /\  y  =  ( w  i^i 
A ) )  -> 
( ( ( Ft  A )  i^i  ~P (
x  i^i  y )
)  =/=  (/)  <->  ( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A
) )  =/=  (/) ) )
5342, 45, 52ralxfr2d 4506 . . . . 5  |-  ( ( ( F  e.  (
fBas `  Y )  /\  A  C_  Y )  /\  x  =  ( z  i^i  A ) )  ->  ( A. y  e.  ( Ft  A
) ( ( Ft  A )  i^i  ~P (
x  i^i  y )
)  =/=  (/)  <->  A. w  e.  F  ( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A
) )  =/=  (/) ) )
5437, 39, 53ralxfr2d 4506 . . . 4  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  ( A. x  e.  ( Ft  A ) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/)  <->  A. z  e.  F  A. w  e.  F  ( ( Ft  A )  i^i  ~P ( ( z  i^i  w )  i^i  A
) )  =/=  (/) ) )
5534, 54mpbird 232 . . 3  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  A. x  e.  ( Ft  A ) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/) )
56 isfbas 19400 . . . . . 6  |-  ( A  e.  _V  ->  (
( Ft  A )  e.  (
fBas `  A )  <->  ( ( Ft  A )  C_  ~P A  /\  ( ( Ft  A )  =/=  (/)  /\  (/)  e/  ( Ft  A )  /\  A. x  e.  ( Ft  A
) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/) ) ) ) )
5756baibd 900 . . . . 5  |-  ( ( A  e.  _V  /\  ( Ft  A )  C_  ~P A )  ->  (
( Ft  A )  e.  (
fBas `  A )  <->  ( ( Ft  A )  =/=  (/)  /\  (/)  e/  ( Ft  A )  /\  A. x  e.  ( Ft  A
) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/) ) ) )
58 3anan32 977 . . . . 5  |-  ( ( ( Ft  A )  =/=  (/)  /\  (/)  e/  ( Ft  A )  /\  A. x  e.  ( Ft  A
) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/) )  <->  ( (
( Ft  A )  =/=  (/)  /\  A. x  e.  ( Ft  A
) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/) )  /\  (/) 
e/  ( Ft  A ) ) )
5957, 58syl6bb 261 . . . 4  |-  ( ( A  e.  _V  /\  ( Ft  A )  C_  ~P A )  ->  (
( Ft  A )  e.  (
fBas `  A )  <->  ( ( ( Ft  A )  =/=  (/)  /\  A. x  e.  ( Ft  A ) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/) )  /\  (/) 
e/  ( Ft  A ) ) ) )
6059baibd 900 . . 3  |-  ( ( ( A  e.  _V  /\  ( Ft  A )  C_  ~P A )  /\  (
( Ft  A )  =/=  (/)  /\  A. x  e.  ( Ft  A
) A. y  e.  ( Ft  A ) ( ( Ft  A )  i^i  ~P ( x  i^i  y
) )  =/=  (/) ) )  ->  ( ( Ft  A )  e.  ( fBas `  A )  <->  (/)  e/  ( Ft  A ) ) )
614, 6, 17, 55, 60syl22anc 1219 . 2  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  (
( Ft  A )  e.  (
fBas `  A )  <->  (/)  e/  ( Ft  A ) ) )
62 df-nel 2607 . 2  |-  ( (/)  e/  ( Ft  A )  <->  -.  (/)  e.  ( Ft  A ) )
6361, 62syl6bb 261 1  |-  ( ( F  e.  ( fBas `  Y )  /\  A  C_  Y )  ->  (
( Ft  A )  e.  (
fBas `  A )  <->  -.  (/)  e.  ( Ft  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2604    e/ wnel 2605   A.wral 2713   E.wrex 2714   _Vcvv 2970    i^i cin 3325    C_ wss 3326   (/)c0 3635   ~Pcpw 3858   dom cdm 4838   ` cfv 5416  (class class class)co 6089   ↾t crest 14357   fBascfbas 17802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-1st 6575  df-2nd 6576  df-rest 14359  df-fbas 17812
This theorem is referenced by:  trfbas  19415  uzfbas  19469  trcfilu  19867
  Copyright terms: Public domain W3C validator