MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcssc Structured version   Visualization version   GIF version

Theorem subcssc 16323
Description: An element in the set of subcategories is a subset of the category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
subcixp.1 (𝜑𝐽 ∈ (Subcat‘𝐶))
subcssc.h 𝐻 = (Homf𝐶)
Assertion
Ref Expression
subcssc (𝜑𝐽cat 𝐻)

Proof of Theorem subcssc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subcixp.1 . . 3 (𝜑𝐽 ∈ (Subcat‘𝐶))
2 subcssc.h . . . 4 𝐻 = (Homf𝐶)
3 eqid 2610 . . . 4 (Id‘𝐶) = (Id‘𝐶)
4 eqid 2610 . . . 4 (comp‘𝐶) = (comp‘𝐶)
5 subcrcl 16299 . . . . 5 (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
61, 5syl 17 . . . 4 (𝜑𝐶 ∈ Cat)
7 eqidd 2611 . . . 4 (𝜑 → dom dom 𝐽 = dom dom 𝐽)
82, 3, 4, 6, 7issubc 16318 . . 3 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽𝑧 ∈ dom dom 𝐽𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
91, 8mpbid 221 . 2 (𝜑 → (𝐽cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽𝑧 ∈ dom dom 𝐽𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
109simpld 474 1 (𝜑𝐽cat 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  cop 4131   class class class wbr 4583  dom cdm 5038  cfv 5804  (class class class)co 6549  compcco 15780  Catccat 16148  Idccid 16149  Homf chomf 16150  cat cssc 16290  Subcatcsubc 16292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-pm 7747  df-ixp 7795  df-ssc 16293  df-subc 16295
This theorem is referenced by:  subcfn  16324  subcss1  16325  subcss2  16326  issubc3  16332  subsubc  16336
  Copyright terms: Public domain W3C validator