MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc Structured version   Visualization version   GIF version

Theorem issubc 16318
Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
issubc.h 𝐻 = (Homf𝐶)
issubc.i 1 = (Id‘𝐶)
issubc.o · = (comp‘𝐶)
issubc.c (𝜑𝐶 ∈ Cat)
issubc.s (𝜑𝑆 = dom dom 𝐽)
Assertion
Ref Expression
issubc (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐶   𝑓,𝐽,𝑔,𝑥,𝑦,𝑧   𝑆,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑓,𝑔)   1 (𝑥,𝑦,𝑧,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem issubc
Dummy variables 𝑐 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubc.c . 2 (𝜑𝐶 ∈ Cat)
2 issubc.s . 2 (𝜑𝑆 = dom dom 𝐽)
3 simpl 472 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → 𝐶 ∈ Cat)
4 sscpwex 16298 . . . . . . . 8 {𝑗𝑗cat (Homf𝑐)} ∈ V
5 simpl 472 . . . . . . . . 9 ((𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) → 𝑗cat (Homf𝑐))
65ss2abi 3637 . . . . . . . 8 {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ⊆ {𝑗𝑗cat (Homf𝑐)}
74, 6ssexi 4731 . . . . . . 7 {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V
87csbex 4721 . . . . . 6 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V
98a1i 11 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V)
10 df-subc 16295 . . . . . 6 Subcat = (𝑐 ∈ Cat ↦ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
1110fvmpts 6194 . . . . 5 ((𝐶 ∈ Cat ∧ 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ∈ V) → (Subcat‘𝐶) = 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
123, 9, 11syl2anc 691 . . . 4 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → (Subcat‘𝐶) = 𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
1312eleq2d 2673 . . 3 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → (𝐽 ∈ (Subcat‘𝐶) ↔ 𝐽𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))}))
14 sbcel2 3941 . . . 4 ([𝐶 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ 𝐽𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
1514a1i 11 . . 3 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → ([𝐶 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ 𝐽𝐶 / 𝑐{𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))}))
16 elex 3185 . . . . . 6 (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} → 𝐽 ∈ V)
1716a1i 11 . . . . 5 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} → 𝐽 ∈ V))
18 sscrel 16296 . . . . . . . 8 Rel ⊆cat
1918brrelexi 5082 . . . . . . 7 (𝐽cat 𝐻𝐽 ∈ V)
2019adantr 480 . . . . . 6 ((𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) → 𝐽 ∈ V)
2120a1i 11 . . . . 5 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → ((𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) → 𝐽 ∈ V))
22 df-sbc 3403 . . . . . . 7 ([𝐽 / 𝑗](𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ 𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))})
23 simpr 476 . . . . . . . 8 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) → 𝐽 ∈ V)
24 simpr 476 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽)
25 simpr 476 . . . . . . . . . . . . . 14 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶)
2625fveq2d 6107 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (Homf𝑐) = (Homf𝐶))
27 issubc.h . . . . . . . . . . . . 13 𝐻 = (Homf𝐶)
2826, 27syl6eqr 2662 . . . . . . . . . . . 12 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (Homf𝑐) = 𝐻)
2928adantr 480 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → (Homf𝑐) = 𝐻)
3024, 29breq12d 4596 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → (𝑗cat (Homf𝑐) ↔ 𝐽cat 𝐻))
31 vex 3176 . . . . . . . . . . . . . 14 𝑗 ∈ V
3231dmex 6991 . . . . . . . . . . . . 13 dom 𝑗 ∈ V
3332dmex 6991 . . . . . . . . . . . 12 dom dom 𝑗 ∈ V
3433a1i 11 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom dom 𝑗 ∈ V)
3524dmeqd 5248 . . . . . . . . . . . . 13 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom 𝑗 = dom 𝐽)
3635dmeqd 5248 . . . . . . . . . . . 12 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom dom 𝑗 = dom dom 𝐽)
37 simpllr 795 . . . . . . . . . . . 12 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → 𝑆 = dom dom 𝐽)
3836, 37eqtr4d 2647 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → dom dom 𝑗 = 𝑆)
39 simpr 476 . . . . . . . . . . . 12 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
40 simpllr 795 . . . . . . . . . . . . . . . . 17 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → 𝑐 = 𝐶)
4140fveq2d 6107 . . . . . . . . . . . . . . . 16 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (Id‘𝑐) = (Id‘𝐶))
42 issubc.i . . . . . . . . . . . . . . . 16 1 = (Id‘𝐶)
4341, 42syl6eqr 2662 . . . . . . . . . . . . . . 15 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (Id‘𝑐) = 1 )
4443fveq1d 6105 . . . . . . . . . . . . . 14 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → ((Id‘𝑐)‘𝑥) = ( 1𝑥))
45 simplr 788 . . . . . . . . . . . . . . 15 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → 𝑗 = 𝐽)
4645oveqd 6566 . . . . . . . . . . . . . 14 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑥𝑗𝑥) = (𝑥𝐽𝑥))
4744, 46eleq12d 2682 . . . . . . . . . . . . 13 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ( 1𝑥) ∈ (𝑥𝐽𝑥)))
4845oveqd 6566 . . . . . . . . . . . . . . . 16 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑥𝑗𝑦) = (𝑥𝐽𝑦))
4945oveqd 6566 . . . . . . . . . . . . . . . . 17 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑦𝑗𝑧) = (𝑦𝐽𝑧))
5040fveq2d 6107 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (comp‘𝑐) = (comp‘𝐶))
51 issubc.o . . . . . . . . . . . . . . . . . . . . 21 · = (comp‘𝐶)
5250, 51syl6eqr 2662 . . . . . . . . . . . . . . . . . . . 20 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (comp‘𝑐) = · )
5352oveqd 6566 . . . . . . . . . . . . . . . . . . 19 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧) = (⟨𝑥, 𝑦· 𝑧))
5453oveqd 6566 . . . . . . . . . . . . . . . . . 18 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))
5545oveqd 6566 . . . . . . . . . . . . . . . . . 18 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (𝑥𝑗𝑧) = (𝑥𝐽𝑧))
5654, 55eleq12d 2682 . . . . . . . . . . . . . . . . 17 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5749, 56raleqbidv 3129 . . . . . . . . . . . . . . . 16 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5848, 57raleqbidv 3129 . . . . . . . . . . . . . . 15 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
5939, 58raleqbidv 3129 . . . . . . . . . . . . . 14 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
6039, 59raleqbidv 3129 . . . . . . . . . . . . 13 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧) ↔ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
6147, 60anbi12d 743 . . . . . . . . . . . 12 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → ((((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
6239, 61raleqbidv 3129 . . . . . . . . . . 11 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) ∧ 𝑠 = 𝑆) → (∀𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
6334, 38, 62sbcied2 3440 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → ([dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)) ↔ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
6430, 63anbi12d 743 . . . . . . . . 9 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝑗 = 𝐽) → ((𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6564adantlr 747 . . . . . . . 8 (((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) ∧ 𝑗 = 𝐽) → ((𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6623, 65sbcied 3439 . . . . . . 7 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) → ([𝐽 / 𝑗](𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧))) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6722, 66syl5bbr 273 . . . . . 6 ((((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) ∧ 𝐽 ∈ V) → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
6867ex 449 . . . . 5 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (𝐽 ∈ V → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))))
6917, 21, 68pm5.21ndd 368 . . . 4 (((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) ∧ 𝑐 = 𝐶) → (𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
703, 69sbcied 3439 . . 3 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → ([𝐶 / 𝑐]𝐽 ∈ {𝑗 ∣ (𝑗cat (Homf𝑐) ∧ [dom dom 𝑗 / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑗𝑦)∀𝑔 ∈ (𝑦𝑗𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑗𝑧)))} ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
7113, 15, 703bitr2d 295 . 2 ((𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽) → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
721, 2, 71syl2anc 691 1 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  Vcvv 3173  [wsbc 3402  csb 3499  cop 4131   class class class wbr 4583  dom cdm 5038  cfv 5804  (class class class)co 6549  compcco 15780  Catccat 16148  Idccid 16149  Homf chomf 16150  cat cssc 16290  Subcatcsubc 16292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-pm 7747  df-ixp 7795  df-ssc 16293  df-subc 16295
This theorem is referenced by:  issubc2  16319  subcssc  16323
  Copyright terms: Public domain W3C validator