MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc Structured version   Unicode version

Theorem issubc 15241
Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
issubc.h  |-  H  =  ( Hom f  `  C )
issubc.i  |-  .1.  =  ( Id `  C )
issubc.o  |-  .x.  =  (comp `  C )
issubc.c  |-  ( ph  ->  C  e.  Cat )
issubc.s  |-  ( ph  ->  S  =  dom  dom  J )
Assertion
Ref Expression
issubc  |-  ( ph  ->  ( J  e.  (Subcat `  C )  <->  ( J  C_cat  H  /\  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) ) ) )
Distinct variable groups:    f, g, x, y, z, C    f, J, g, x, y, z    S, f, g, x, y, z
Allowed substitution hints:    ph( x, y, z, f, g)    .x. ( x, y, z, f, g)    .1. ( x, y, z, f, g)    H( x, y, z, f, g)

Proof of Theorem issubc
Dummy variables  c 
j  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubc.c . 2  |-  ( ph  ->  C  e.  Cat )
2 issubc.s . 2  |-  ( ph  ->  S  =  dom  dom  J )
3 simpl 455 . . . . 5  |-  ( ( C  e.  Cat  /\  S  =  dom  dom  J
)  ->  C  e.  Cat )
4 sscpwex 15221 . . . . . . . 8  |-  { j  |  j  C_cat  ( Hom f  `  c ) }  e.  _V
5 simpl 455 . . . . . . . . 9  |-  ( ( j  C_cat  ( Hom f  `  c )  /\  [.
dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) )  ->  j  C_cat  ( Hom f  `  c ) )
65ss2abi 3486 . . . . . . . 8  |-  { j  |  ( j  C_cat  ( Hom f  `  c )  /\  [. dom  dom  j  /  s ]. A. x  e.  s 
( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) }  C_  { j  |  j  C_cat  ( Hom f  `  c
) }
74, 6ssexi 4510 . . . . . . 7  |-  { j  |  ( j  C_cat  ( Hom f  `  c )  /\  [. dom  dom  j  /  s ]. A. x  e.  s 
( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) }  e.  _V
87csbex 4500 . . . . . 6  |-  [_ C  /  c ]_ {
j  |  ( j 
C_cat  ( Hom f  `  c )  /\  [.
dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) }  e.  _V
98a1i 11 . . . . 5  |-  ( ( C  e.  Cat  /\  S  =  dom  dom  J
)  ->  [_ C  / 
c ]_ { j  |  ( j  C_cat  ( Hom f  `  c )  /\  [. dom  dom  j  /  s ]. A. x  e.  s 
( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) }  e.  _V )
10 df-subc 15218 . . . . . 6  |- Subcat  =  ( c  e.  Cat  |->  { j  |  ( j 
C_cat  ( Hom f  `  c )  /\  [.
dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) } )
1110fvmpts 5859 . . . . 5  |-  ( ( C  e.  Cat  /\  [_ C  /  c ]_ { j  |  ( j  C_cat  ( Hom f  `  c )  /\  [.
dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) }  e.  _V )  ->  (Subcat `  C )  =  [_ C  /  c ]_ { j  |  ( j  C_cat  ( Hom f  `  c )  /\  [.
dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) } )
123, 9, 11syl2anc 659 . . . 4  |-  ( ( C  e.  Cat  /\  S  =  dom  dom  J
)  ->  (Subcat `  C
)  =  [_ C  /  c ]_ {
j  |  ( j 
C_cat  ( Hom f  `  c )  /\  [.
dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) } )
1312eleq2d 2452 . . 3  |-  ( ( C  e.  Cat  /\  S  =  dom  dom  J
)  ->  ( J  e.  (Subcat `  C )  <->  J  e.  [_ C  / 
c ]_ { j  |  ( j  C_cat  ( Hom f  `  c )  /\  [. dom  dom  j  /  s ]. A. x  e.  s 
( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) } ) )
14 sbcel2 3756 . . . 4  |-  ( [. C  /  c ]. J  e.  { j  |  ( j  C_cat  ( Hom f  `  c )  /\  [.
dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) }  <->  J  e.  [_ C  /  c ]_ {
j  |  ( j 
C_cat  ( Hom f  `  c )  /\  [.
dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) } )
1514a1i 11 . . 3  |-  ( ( C  e.  Cat  /\  S  =  dom  dom  J
)  ->  ( [. C  /  c ]. J  e.  { j  |  ( j  C_cat  ( Hom f  `  c )  /\  [.
dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) }  <->  J  e.  [_ C  /  c ]_ {
j  |  ( j 
C_cat  ( Hom f  `  c )  /\  [.
dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) } ) )
16 elex 3043 . . . . . 6  |-  ( J  e.  { j  |  ( j  C_cat  ( Hom f  `  c )  /\  [. dom  dom  j  /  s ]. A. x  e.  s 
( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) }  ->  J  e.  _V )
1716a1i 11 . . . . 5  |-  ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  ->  ( J  e.  { j  |  ( j  C_cat  ( Hom f  `  c )  /\  [. dom  dom  j  /  s ]. A. x  e.  s 
( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) }  ->  J  e.  _V ) )
18 sscrel 15219 . . . . . . . 8  |-  Rel  C_cat
1918brrelexi 4954 . . . . . . 7  |-  ( J 
C_cat  H  ->  J  e.  _V )
2019adantr 463 . . . . . 6  |-  ( ( J  C_cat  H  /\  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) )  ->  J  e.  _V )
2120a1i 11 . . . . 5  |-  ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  ->  (
( J  C_cat  H  /\  A. x  e.  S  ( (  .1.  `  x
)  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g ( <. x ,  y >.  .x.  z
) f )  e.  ( x J z ) ) )  ->  J  e.  _V )
)
22 df-sbc 3253 . . . . . . 7  |-  ( [. J  /  j ]. (
j  C_cat  ( Hom f  `  c )  /\  [.
dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) )  <-> 
J  e.  { j  |  ( j  C_cat  ( Hom f  `  c )  /\  [. dom  dom  j  /  s ]. A. x  e.  s 
( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) } )
23 simpr 459 . . . . . . . 8  |-  ( ( ( ( C  e. 
Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  /\  J  e.  _V )  ->  J  e.  _V )
24 simpr 459 . . . . . . . . . . 11  |-  ( ( ( ( C  e. 
Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  /\  j  =  J
)  ->  j  =  J )
25 simpr 459 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  ->  c  =  C )
2625fveq2d 5778 . . . . . . . . . . . . 13  |-  ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  ->  ( Hom f  `  c )  =  ( Hom f  `  C ) )
27 issubc.h . . . . . . . . . . . . 13  |-  H  =  ( Hom f  `  C )
2826, 27syl6eqr 2441 . . . . . . . . . . . 12  |-  ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  ->  ( Hom f  `  c )  =  H )
2928adantr 463 . . . . . . . . . . 11  |-  ( ( ( ( C  e. 
Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  /\  j  =  J
)  ->  ( Hom f  `  c
)  =  H )
3024, 29breq12d 4380 . . . . . . . . . 10  |-  ( ( ( ( C  e. 
Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  /\  j  =  J
)  ->  ( j  C_cat  ( Hom f  `  c )  <->  J  C_cat  H ) )
31 vex 3037 . . . . . . . . . . . . . 14  |-  j  e. 
_V
3231dmex 6632 . . . . . . . . . . . . 13  |-  dom  j  e.  _V
3332dmex 6632 . . . . . . . . . . . 12  |-  dom  dom  j  e.  _V
3433a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( C  e. 
Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  /\  j  =  J
)  ->  dom  dom  j  e.  _V )
3524dmeqd 5118 . . . . . . . . . . . . 13  |-  ( ( ( ( C  e. 
Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  /\  j  =  J
)  ->  dom  j  =  dom  J )
3635dmeqd 5118 . . . . . . . . . . . 12  |-  ( ( ( ( C  e. 
Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  /\  j  =  J
)  ->  dom  dom  j  =  dom  dom  J )
37 simpllr 758 . . . . . . . . . . . 12  |-  ( ( ( ( C  e. 
Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  /\  j  =  J
)  ->  S  =  dom  dom  J )
3836, 37eqtr4d 2426 . . . . . . . . . . 11  |-  ( ( ( ( C  e. 
Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  /\  j  =  J
)  ->  dom  dom  j  =  S )
39 simpr 459 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  s  =  S )
40 simpllr 758 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  c  =  C )
4140fveq2d 5778 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  ( Id `  c )  =  ( Id `  C
) )
42 issubc.i . . . . . . . . . . . . . . . 16  |-  .1.  =  ( Id `  C )
4341, 42syl6eqr 2441 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  ( Id `  c )  =  .1.  )
4443fveq1d 5776 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  (
( Id `  c
) `  x )  =  (  .1.  `  x
) )
45 simplr 753 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  j  =  J )
4645oveqd 6213 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  (
x j x )  =  ( x J x ) )
4744, 46eleq12d 2464 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  (
( ( Id `  c ) `  x
)  e.  ( x j x )  <->  (  .1.  `  x )  e.  ( x J x ) ) )
4845oveqd 6213 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  (
x j y )  =  ( x J y ) )
4945oveqd 6213 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  (
y j z )  =  ( y J z ) )
5040fveq2d 5778 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  (comp `  c )  =  (comp `  C ) )
51 issubc.o . . . . . . . . . . . . . . . . . . . . 21  |-  .x.  =  (comp `  C )
5250, 51syl6eqr 2441 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  (comp `  c )  =  .x.  )
5352oveqd 6213 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  ( <. x ,  y >.
(comp `  c )
z )  =  (
<. x ,  y >.  .x.  z ) )
5453oveqd 6213 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  (
g ( <. x ,  y >. (comp `  c ) z ) f )  =  ( g ( <. x ,  y >.  .x.  z
) f ) )
5545oveqd 6213 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  (
x j z )  =  ( x J z ) )
5654, 55eleq12d 2464 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  (
( g ( <.
x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z )  <->  ( g
( <. x ,  y
>.  .x.  z ) f )  e.  ( x J z ) ) )
5749, 56raleqbidv 2993 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  ( A. g  e.  (
y j z ) ( g ( <.
x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z )  <->  A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) )
5848, 57raleqbidv 2993 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  ( A. f  e.  (
x j y ) A. g  e.  ( y j z ) ( g ( <.
x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z )  <->  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) )
5939, 58raleqbidv 2993 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  ( A. z  e.  s  A. f  e.  (
x j y ) A. g  e.  ( y j z ) ( g ( <.
x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z )  <->  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) )
6039, 59raleqbidv 2993 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  ( A. y  e.  s  A. z  e.  s  A. f  e.  (
x j y ) A. g  e.  ( y j z ) ( g ( <.
x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z )  <->  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) )
6147, 60anbi12d 708 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  (
( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) )  <->  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) ) )
6239, 61raleqbidv 2993 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  j  =  J )  /\  s  =  S )  ->  ( A. x  e.  s 
( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) )  <->  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) ) )
6334, 38, 62sbcied2 3290 . . . . . . . . . 10  |-  ( ( ( ( C  e. 
Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  /\  j  =  J
)  ->  ( [. dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) )  <->  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) ) )
6430, 63anbi12d 708 . . . . . . . . 9  |-  ( ( ( ( C  e. 
Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  /\  j  =  J
)  ->  ( (
j  C_cat  ( Hom f  `  c )  /\  [.
dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) )  <-> 
( J  C_cat  H  /\  A. x  e.  S  ( (  .1.  `  x
)  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g ( <. x ,  y >.  .x.  z
) f )  e.  ( x J z ) ) ) ) )
6564adantlr 712 . . . . . . . 8  |-  ( ( ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C
)  /\  J  e.  _V )  /\  j  =  J )  ->  (
( j  C_cat  ( Hom f  `  c )  /\  [. dom  dom  j  /  s ]. A. x  e.  s 
( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) )  <-> 
( J  C_cat  H  /\  A. x  e.  S  ( (  .1.  `  x
)  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g ( <. x ,  y >.  .x.  z
) f )  e.  ( x J z ) ) ) ) )
6623, 65sbcied 3289 . . . . . . 7  |-  ( ( ( ( C  e. 
Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  /\  J  e.  _V )  ->  ( [. J  /  j ]. (
j  C_cat  ( Hom f  `  c )  /\  [.
dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) )  <-> 
( J  C_cat  H  /\  A. x  e.  S  ( (  .1.  `  x
)  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g ( <. x ,  y >.  .x.  z
) f )  e.  ( x J z ) ) ) ) )
6722, 66syl5bbr 259 . . . . . 6  |-  ( ( ( ( C  e. 
Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  /\  J  e.  _V )  ->  ( J  e. 
{ j  |  ( j  C_cat  ( Hom f  `  c )  /\  [.
dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) }  <->  ( J  C_cat  H  /\  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) ) ) )
6867ex 432 . . . . 5  |-  ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  ->  ( J  e.  _V  ->  ( J  e.  { j  |  ( j  C_cat  ( Hom f  `  c )  /\  [. dom  dom  j  /  s ]. A. x  e.  s 
( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) }  <->  ( J  C_cat  H  /\  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) ) ) ) )
6917, 21, 68pm5.21ndd 352 . . . 4  |-  ( ( ( C  e.  Cat  /\  S  =  dom  dom  J )  /\  c  =  C )  ->  ( J  e.  { j  |  ( j  C_cat  ( Hom f  `  c )  /\  [. dom  dom  j  /  s ]. A. x  e.  s 
( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) }  <->  ( J  C_cat  H  /\  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) ) ) )
703, 69sbcied 3289 . . 3  |-  ( ( C  e.  Cat  /\  S  =  dom  dom  J
)  ->  ( [. C  /  c ]. J  e.  { j  |  ( j  C_cat  ( Hom f  `  c )  /\  [.
dom  dom  j  /  s ]. A. x  e.  s  ( ( ( Id
`  c ) `  x )  e.  ( x j x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x j y ) A. g  e.  ( y j z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x j z ) ) ) }  <->  ( J  C_cat  H  /\  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) ) ) )
7113, 15, 703bitr2d 281 . 2  |-  ( ( C  e.  Cat  /\  S  =  dom  dom  J
)  ->  ( J  e.  (Subcat `  C )  <->  ( J  C_cat  H  /\  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) ) ) )
721, 2, 71syl2anc 659 1  |-  ( ph  ->  ( J  e.  (Subcat `  C )  <->  ( J  C_cat  H  /\  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1826   {cab 2367   A.wral 2732   _Vcvv 3034   [.wsbc 3252   [_csb 3348   <.cop 3950   class class class wbr 4367   dom cdm 4913   ` cfv 5496  (class class class)co 6196  compcco 14714   Catccat 15071   Idccid 15072   Hom f chomf 15073    C_cat cssc 15213  Subcatcsubc 15215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-pm 7341  df-ixp 7389  df-ssc 15216  df-subc 15218
This theorem is referenced by:  issubc2  15242  subcssc  15246
  Copyright terms: Public domain W3C validator