Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subcrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the subcategory predicate. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
subcrcl | ⊢ (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-subc 16295 | . . 3 ⊢ Subcat = (𝑐 ∈ Cat ↦ {ℎ ∣ (ℎ ⊆cat (Homf ‘𝑐) ∧ [dom dom ℎ / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥ℎ𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧)))}) | |
2 | 1 | dmmptss 5548 | . 2 ⊢ dom Subcat ⊆ Cat |
3 | elfvdm 6130 | . 2 ⊢ (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ dom Subcat) | |
4 | 2, 3 | sseldi 3566 | 1 ⊢ (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 1977 {cab 2596 ∀wral 2896 [wsbc 3402 〈cop 4131 class class class wbr 4583 dom cdm 5038 ‘cfv 5804 (class class class)co 6549 compcco 15780 Catccat 16148 Idccid 16149 Homf chomf 16150 ⊆cat cssc 16290 Subcatcsubc 16292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-xp 5044 df-rel 5045 df-cnv 5046 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fv 5812 df-subc 16295 |
This theorem is referenced by: subcssc 16323 subcidcl 16327 subccocl 16328 subccatid 16329 subsubc 16336 funcres2b 16380 funcres2 16381 idfusubc 41656 |
Copyright terms: Public domain | W3C validator |