MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcrcl Structured version   Visualization version   GIF version

Theorem subcrcl 16299
Description: Reverse closure for the subcategory predicate. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
subcrcl (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)

Proof of Theorem subcrcl
Dummy variables 𝑓 𝑐 𝑔 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subc 16295 . . 3 Subcat = (𝑐 ∈ Cat ↦ { ∣ (cat (Homf𝑐) ∧ [dom dom / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑧)))})
21dmmptss 5548 . 2 dom Subcat ⊆ Cat
3 elfvdm 6130 . 2 (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ dom Subcat)
42, 3sseldi 3566 1 (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  {cab 2596  wral 2896  [wsbc 3402  cop 4131   class class class wbr 4583  dom cdm 5038  cfv 5804  (class class class)co 6549  compcco 15780  Catccat 16148  Idccid 16149  Homf chomf 16150  cat cssc 16290  Subcatcsubc 16292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fv 5812  df-subc 16295
This theorem is referenced by:  subcssc  16323  subcidcl  16327  subccocl  16328  subccatid  16329  subsubc  16336  funcres2b  16380  funcres2  16381  idfusubc  41656
  Copyright terms: Public domain W3C validator