Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcss2 Structured version   Visualization version   GIF version

Theorem subcss2 16326
 Description: The morphisms of a subcategory are a subset of the morphisms of the original. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subcss1.1 (𝜑𝐽 ∈ (Subcat‘𝐶))
subcss1.2 (𝜑𝐽 Fn (𝑆 × 𝑆))
subcss2.h 𝐻 = (Hom ‘𝐶)
subcss2.x (𝜑𝑋𝑆)
subcss2.y (𝜑𝑌𝑆)
Assertion
Ref Expression
subcss2 (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋𝐻𝑌))

Proof of Theorem subcss2
StepHypRef Expression
1 subcss1.2 . . 3 (𝜑𝐽 Fn (𝑆 × 𝑆))
2 subcss1.1 . . . 4 (𝜑𝐽 ∈ (Subcat‘𝐶))
3 eqid 2610 . . . 4 (Homf𝐶) = (Homf𝐶)
42, 3subcssc 16323 . . 3 (𝜑𝐽cat (Homf𝐶))
5 subcss2.x . . 3 (𝜑𝑋𝑆)
6 subcss2.y . . 3 (𝜑𝑌𝑆)
71, 4, 5, 6ssc2 16305 . 2 (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋(Homf𝐶)𝑌))
8 eqid 2610 . . 3 (Base‘𝐶) = (Base‘𝐶)
9 subcss2.h . . 3 𝐻 = (Hom ‘𝐶)
102, 1, 8subcss1 16325 . . . 4 (𝜑𝑆 ⊆ (Base‘𝐶))
1110, 5sseldd 3569 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
1210, 6sseldd 3569 . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
133, 8, 9, 11, 12homfval 16175 . 2 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋𝐻𝑌))
147, 13sseqtrd 3604 1 (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋𝐻𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540   × cxp 5036   Fn wfn 5799  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  Hom chom 15779  Homf chomf 16150  Subcatcsubc 16292 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-pm 7747  df-ixp 7795  df-homf 16154  df-ssc 16293  df-subc 16295 This theorem is referenced by:  subccatid  16329  funcres  16379  funcres2b  16380
 Copyright terms: Public domain W3C validator