MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectmon Structured version   Visualization version   GIF version

Theorem sectmon 16265
Description: If 𝐹 is a section of 𝐺, then 𝐹 is a monomorphism. A monomorphism that arises from a section is also known as a split monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
sectmon.b 𝐵 = (Base‘𝐶)
sectmon.m 𝑀 = (Mono‘𝐶)
sectmon.s 𝑆 = (Sect‘𝐶)
sectmon.c (𝜑𝐶 ∈ Cat)
sectmon.x (𝜑𝑋𝐵)
sectmon.y (𝜑𝑌𝐵)
sectmon.1 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
Assertion
Ref Expression
sectmon (𝜑𝐹 ∈ (𝑋𝑀𝑌))

Proof of Theorem sectmon
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sectmon.1 . . . 4 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
2 sectmon.b . . . . 5 𝐵 = (Base‘𝐶)
3 eqid 2610 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2610 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
5 eqid 2610 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
6 sectmon.s . . . . 5 𝑆 = (Sect‘𝐶)
7 sectmon.c . . . . 5 (𝜑𝐶 ∈ Cat)
8 sectmon.x . . . . 5 (𝜑𝑋𝐵)
9 sectmon.y . . . . 5 (𝜑𝑌𝐵)
102, 3, 4, 5, 6, 7, 8, 9issect 16236 . . . 4 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
111, 10mpbid 221 . . 3 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
1211simp1d 1066 . 2 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
13 oveq2 6557 . . . . 5 ((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))))
1411simp3d 1068 . . . . . . . . 9 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
1514ad2antrr 758 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
1615oveq1d 6564 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔))
177ad2antrr 758 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝐶 ∈ Cat)
18 simplr 788 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑥𝐵)
198ad2antrr 758 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑋𝐵)
209ad2antrr 758 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑌𝐵)
21 simprl 790 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋))
2212ad2antrr 758 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
2311simp2d 1067 . . . . . . . . 9 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋))
2423ad2antrr 758 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋))
252, 3, 4, 17, 18, 19, 20, 21, 22, 19, 24catass 16170 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)))
262, 3, 5, 17, 18, 4, 19, 21catlid 16167 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = 𝑔)
2716, 25, 263eqtr3d 2652 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) = 𝑔)
2815oveq1d 6564 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)) = (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)))
29 simprr 792 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ∈ (𝑥(Hom ‘𝐶)𝑋))
302, 3, 4, 17, 18, 19, 20, 29, 22, 19, 24catass 16170 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))))
312, 3, 5, 17, 18, 4, 19, 29catlid 16167 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (((Id‘𝐶)‘𝑋)(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑋)) = )
3228, 30, 313eqtr3d 2652 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))) = )
3327, 32eqeq12d 2625 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔)) = (𝐺(⟨𝑥, 𝑌⟩(comp‘𝐶)𝑋)(𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌))) ↔ 𝑔 = ))
3413, 33syl5ib 233 . . . 4 (((𝜑𝑥𝐵) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋) ∧ ∈ (𝑥(Hom ‘𝐶)𝑋))) → ((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
3534ralrimivva 2954 . . 3 ((𝜑𝑥𝐵) → ∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋)∀ ∈ (𝑥(Hom ‘𝐶)𝑋)((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
3635ralrimiva 2949 . 2 (𝜑 → ∀𝑥𝐵𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋)∀ ∈ (𝑥(Hom ‘𝐶)𝑋)((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
37 sectmon.m . . 3 𝑀 = (Mono‘𝐶)
382, 3, 4, 37, 7, 8, 9ismon2 16217 . 2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑥𝐵𝑔 ∈ (𝑥(Hom ‘𝐶)𝑋)∀ ∈ (𝑥(Hom ‘𝐶)𝑋)((𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑥, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
3912, 36, 38mpbir2and 959 1 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  cop 4131   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  Hom chom 15779  compcco 15780  Catccat 16148  Idccid 16149  Monocmon 16211  Sectcsect 16227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-cat 16152  df-cid 16153  df-mon 16213  df-sect 16230
This theorem is referenced by:  sectepi  16267
  Copyright terms: Public domain W3C validator