Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sectepi | Structured version Visualization version GIF version |
Description: If 𝐹 is a section of 𝐺, then 𝐺 is an epimorphism. An epimorphism that arises from a section is also known as a split epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
sectepi.b | ⊢ 𝐵 = (Base‘𝐶) |
sectepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
sectepi.s | ⊢ 𝑆 = (Sect‘𝐶) |
sectepi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
sectepi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
sectepi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
sectepi.1 | ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) |
Ref | Expression |
---|---|
sectepi | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐸𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . 4 ⊢ (oppCat‘𝐶) = (oppCat‘𝐶) | |
2 | sectepi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | 1, 2 | oppcbas 16201 | . . 3 ⊢ 𝐵 = (Base‘(oppCat‘𝐶)) |
4 | eqid 2610 | . . 3 ⊢ (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶)) | |
5 | eqid 2610 | . . 3 ⊢ (Sect‘(oppCat‘𝐶)) = (Sect‘(oppCat‘𝐶)) | |
6 | sectepi.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
7 | 1 | oppccat 16205 | . . . 4 ⊢ (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat) |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
9 | sectepi.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | sectepi.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | sectepi.1 | . . . 4 ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) | |
12 | sectepi.s | . . . . 5 ⊢ 𝑆 = (Sect‘𝐶) | |
13 | 2, 1, 6, 9, 10, 12, 5 | oppcsect 16261 | . . . 4 ⊢ (𝜑 → (𝐺(𝑋(Sect‘(oppCat‘𝐶))𝑌)𝐹 ↔ 𝐹(𝑋𝑆𝑌)𝐺)) |
14 | 11, 13 | mpbird 246 | . . 3 ⊢ (𝜑 → 𝐺(𝑋(Sect‘(oppCat‘𝐶))𝑌)𝐹) |
15 | 3, 4, 5, 8, 9, 10, 14 | sectmon 16265 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑋(Mono‘(oppCat‘𝐶))𝑌)) |
16 | sectepi.e | . . 3 ⊢ 𝐸 = (Epi‘𝐶) | |
17 | 1, 6, 4, 16 | oppcmon 16221 | . 2 ⊢ (𝜑 → (𝑋(Mono‘(oppCat‘𝐶))𝑌) = (𝑌𝐸𝑋)) |
18 | 15, 17 | eleqtrd 2690 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐸𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 Catccat 16148 oppCatcoppc 16194 Monocmon 16211 Epicepi 16212 Sectcsect 16227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-tpos 7239 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-hom 15793 df-cco 15794 df-cat 16152 df-cid 16153 df-oppc 16195 df-mon 16213 df-epi 16214 df-sect 16230 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |